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An Online Parallel and Distributed Algorithm for
Recursive Estimation of Sparse Signals

Yang Yang, Mengyi Zhang, Marius Pesavento, and Daniel P. Palomar

Abstract—In this paper, we consider a recursive estimation
problem for linear regression where the signal to be estimated
admits a sparse representation and measurement samples are
only sequentially available. We propose a convergent parallel
estimation scheme that consists in solving a sequence of ℓ1-
regularized least-square problems approximately. The proposed
scheme is novel in three aspects: i) all elements of the unknown
vector variable are updated in parallel at each time instance, and
convergence speed is much faster than state-of-the-art schemes
which update the elements sequentially; ii) both the update
direction and stepsize of each element have simple closed-form
expressions, so the algorithm is suitable for online (real-time)
implementation; and iii) the stepsize is designed to accelerate the
convergence but it does not suffer from the common trouble of
parameter tuning in literature. Both centralized and distributed
implementation schemes are discussed. The attractive features of
the proposed algorithm are also numerically consolidated.

I. INTRODUCTION

Signal estimation has been a fundamental problem in a
number of scenarios, such as wireless sensor networks (WSN)
and cognitive radio (CR). WSN has received a lot of attention
and is found to be useful in diverse disciplines such as environ-
mental monitoring, smart grid, and wireless communications
[1]. CR appears as an enabling technique for flexible and
efficient use of the radio spectrum [2, 3], since it allows
the unlicensed secondary users (SUs) to access the spectrum
provided that the licensed primary users (PUs) are idle, and/or
the interference generated by the SUs to the PUs is below a
certain level that is tolerable for the PUs [4, 5].

One in CR systems is the ability to obtain a precise estimate
of the PUs’ power distribution map so that the SUs can avoid
the areas in which the PUs are actively transmitting. This is
usually realized through the estimation of the position, transmit
status, and/or transmit power of PUs [6, 7, 8, 9], and such an
estimation is typically obtained based on the minimum mean-
square-error (MMSE) criterion [10, 11, 12, 13, 14, 8, 1].
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The MMSE approach involves the calculation of the ex-
pectation of a squared ℓ2-norm function that depends on the
so-called regression vector and measurement output, both of
which are random variables. This is essentially a stochastic
optimization problem, but when the statistics of these ran-
dom variables are unknown, it is impossible to calculate the
expectation analytically. An alternative is to use the sample
average function, constructed from the sequentially available
measurements, as an approximation of the expectation, and
this leads to the well-known recursive least-square (RLS)
algorithm [11, 12, 13, 1]. As the measurements are available
sequentially, at each time instance of the RLS algorithm, an LS
problem has to be solved, which furthermore admits a closed-
form solution and thus can efficiently be computed. More
details can be found in standard textbooks such as [10, 11].

In practice, the signal to be estimated may be sparse in
nature [14, 7, 15, 8, 1]. In a recent attempt to apply the RLS
approach to estimate a sparse signal, a regularization function
in terms of ℓ1-norm was incorporated into the LS function to
encourage sparse estimates [14, 1], leading to an ℓ1-regularized
LS problem which has the form of the least-absolute shrinkage
and selection operator (LASSO) [16]. Then in the recursive
estimation of a sparse signal, the only difference from standard
RLS is that at each time instance, instead of solving an LS
problem as in RLS, an ℓ1-regularized LS problem in the form
of LASSO is solved [1].

However, a closed-form solution to the ℓ1-regularized LS
problem no longer exists because of the ℓ1-norm regularization
function and the problem can only be solved iteratively. As a
matter of fact, iterative algorithms to solve the ℓ1-regularized
LS problems have been the center of extensive research in re-
cent years and a number of solvers have been developed, e.g.,
GP [17], l1_ls [18], FISTA [19], ADMM [20], and FLEXA
[21]. Since the measurements are sequentially available, and
with each measurement, a new ℓ1-regularized LS problem is
formed and solved, the overall complexity of using solvers for
the whole sequence of ℓ1-regularized LS problems is no longer
affordable. If the environment is furthermore fast changing,
this method is not even real-time applicable because new
samples may have already arrived before the old ℓ1-regularized
LS problem is solved.

To make the estimation scheme suitable for online (real-
time) implementation, a sequential algorithm was proposed
in [14], in which the ℓ1-regularized LS problem at each
time instance is solved only approximately. In particular, at
each time instance, the ℓ1-regularized LS problem is solved
with respect to (w.r.t.) only a single element of the unknown
vector variable (instead of all elements as in a solver) while
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remaining elements are fixed, and the element is updated in
closed-form based on the so-called soft-thresholding operator
[19]. After a new sample arrives, a new ℓ1-regularized LS
problem is formed and solved w.r.t. the next element while
remaining elements are fixed. This sequential update rule is
known in literature as block coordinate descent method [22].
To our best knowledge, [14] is the only work on online
algorithms for recursive estimation of sparse signals.

Intuitively, since only a single element is updated at each
time instance, the online algorithm proposed in [14] sometimes
suffers from slow convergence, especially when the signal has
a large dimension while large dimension of sparse signals is
universal in practice. It is tempting to use the parallel algorithm
proposed in [23, 21], but it works for deterministic optimiza-
tion problems only and may not converge for the stochastic
optimization problem at hand. Besides, its convergence speed
heavily depends on the stepsize. Typical stepsizes are Armijo-
like successive line search, constant stepsize, and diminishing
stepsize. The former two suffer from high complexity and
slow convergence [21, Remark 4], while the decay rate of
the diminishing stepsize is very difficult to choose: on the one
hand, a slowly decaying stepsize is preferable to make notable
progress and to achieve satisfactory convergence speed; on the
other hand, theoretical convergence is guaranteed only when
the stepsizes decays fast enough. It is a difficult task on its
own to find the decay rate that gives a good trade-off.

A recent work on parallel algorithms for stochastic opti-
mization is [24]. However, the algorithms proposed in [24] are
not applicable for the recursive estimation of sparse signals.
This is because the regularization function in [24] must be
strongly convex and differentiable while the regularization
gain must be lower bounded by some positive constant so that
convergence can be achieved, but the regularization function
in terms of ℓ1-norm in this paper is convex (but not strongly
convex) and nonsmooth while the regularization gain is de-
creasing to 0.

In this paper, we propose an online parallel algorithm
with provable convergence for recursive estimation of sparse
signals. In particular, our contributions are as follows:

1) At each time instance, the ℓ1-regularized LS problem is
solved approximately and all elements are updated in parallel,
so the convergence speed is greatly enhanced compared with
[14]. As a nontrivial extension of [14] from sequential update
to parallel update and [23, 21] from deterministic optimization
problems to stochastic optimization problems, the convergence
of the proposed algorithm is established.

2) The proposed stepsize is based on the so-called minimiza-
tion rule (also known as exact line search) and its benefits are
twofold: firstly, it guarantees the convergence of the proposed
algorithm, which may however diverge under other stepsize
rules; secondly, notable progress is achieved after each variable
update and the trouble of parameter tuning in [23, 21] is saved.
Besides, both the update direction and stepsize of each element
have a simple closed-form expression, so the algorithm is fast
to converge and suitable for online implementation.

3) When implemented in a distributed manner, for example
in CR networks, the proposed algorithm has a much smaller
signaling overhead than in state-of-the-art techniques [1, 7].

Besides, the estimates of different SUs are always the same
and they are based on the global information of all SUs.
Compared with consensus-based distributed implementations
[8, 7, 1] where each SU makes individual estimate decision
mainly based on his own local information and all SUs con-
verge to the same estimate only asymptotically, the proposed
approach can better protect the Quality-of-Service (QoS) of
PUs because it eliminates the possibility that the estimates
maintained by different SUs lead to conflicting interests of
the PUs (i.e., some may correctly detect the presence of PUs
but some may not in consensus-based algorithms).

The rest of the paper is organized as follows. In Section
II we introduce the system model and formulate the recursive
estimation problem. The online parallel algorithm is proposed
in Section III, and its implementations and extensions are
discussed in Section IV. The performance of the proposed
algorithm is evaluated numerically in Section V and finally
concluding remarks are drawn in Section VI.

Notation: We use x, x and X to denote scalar, vector and
matrix, respectively. Xjk is the (j, k)-th element of X; xk

and xj,k is the k-th element of x and xj , respectively, and
x = (xk)

K
k=1 and xj = (xj,k)

K
k=1. d(X) is a vector that

consists of the diagonal elements of X. x ◦ y denotes the
Hadamard product between x and y. [x]ba denotes the element-
wise projection of x onto [a,b]: [x]ba , max(min(x,b),a),
and [x]

+ denotes the element-wise projection of x onto the
nonnegative orthant: [x]

+ , max(x,0). X† denotes the
Moore-Penrose inverse of X.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Suppose x⋆ = (x⋆
k)

K
k=1 ∈ RK is a deterministic sparse

signal to be estimated based on the the measurement yn ∈ R,
and they are connected through a linear regression model:

yn = gT
nx

⋆ + vn, n = 1, . . . , N, (1)

where N is the number of measurements at any time instance.
The regression vector gn = (gn,k)

K
k=1 ∈ RK is assumed

to be known, and vn ∈ R is the additive estimation noise.
Throughout the paper, we make the following assumptions on
gn and vn for n = 1, . . . , N :

(A1) gn are independently and identically distributed (i.i.d.)
random variables with a bounded positive definite co-
variance matrix;

(A2) vn are i.i.d. random variables with zero mean and
bounded variance, and are uncorrelated with gn.

Given the linear model in (1), the problem is to estimate
x⋆ from the set of regression vectors and measurements
{gn, yn}Nn=1. Since both the regression vector gn and esti-
mation noise vn are random variables, the measurement yn is
also random. A fundamental approach to estimate x⋆ is based
on the MMSE criterion, which has a solid root in adaptive
filter theory [11, 10]. To improve the estimation precision, all
available measurements {gn, yn}Nn=1 are exploited to form a
cooperative estimation problem which consists in finding the
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variable that minimizes the mean-square-error [25, 1, 8]:

x⋆ = argmin
x=(xk)Kk=1

E

[
N∑

n=1

(
yn − gT

nx
)2]

(2)

= argmin
x

1

2
xTGx− bTx,

where G ,
∑N

n=1 E
[
gng

T
n

]
and b ,

∑N
n=1 E [yngn], and

the expectation is taken over {gn, yn}Nn=1.
In practice, the statistics of {gn, yn}Nn=1 are often not

available to compute G and b analytically. In fact, the ab-
sence of statistical information is a general rule rather than
an exception. It is a common approach to approximate the
expectation in (2) by the sample average constructed from the
samples {g(τ)

n , y
(τ)
n }tτ=1 sequentially available up to time t

[11]:

x
(t)
rls , argmin

x

1

2
xTG(t)x− (b(t))Tx (3a)

= G(t)†b(t), (3b)

where G(t) and b(t) is the sample average of G and b,
respectively:

G(t) , 1

t

t∑
τ=1

N∑
n=1

g(τ)
n (g(τ)

n )T , b(t) , 1

t

t∑
τ=1

N∑
n=1

y(τ)n g(τ)
n ,

(4)
and A† is the Moore-Penrose pseudo-inverse of A. In litera-
ture, (3) is known as recursive least square (RLS), as indicated
by the subscript “rls”, and x

(t)
rls can be computed efficiently in

closed-form, cf. (3b).
In many practical applications, the unknown signal x⋆ is

sparse by nature or by design, but x
(t)
rls given by (3) is not

necessarily sparse when t is finite [16, 18]. To overcome
this shortcoming, a sparsity encouraging function in terms of
ℓ1-norm is incorporated into the sample average function in
(3), leading to the following ℓ1-regularized sample average
function at any time instance t = 1, 2, . . . [14, 7, 1]:

L(t)(x) , 1

2
xTG(t)x− (b(t))Tx+ µ(t) ∥x∥1 , (5)

where µ(t) > 0. Define x
(t)
lasso as the minimizing variable of

L(t)(x):

x
(t)
lasso = argmin

x
L(t)(x), t = 1, 2, . . . , (6)

In literature, problem (6) for any fixed t is known as the least-
absolute shrinkage and selection operator (LASSO) [16, 18]
(as indicated by the subscript “lasso” in (6)). Note that in
batch processing [16, 18], problem (6) is solved only once
when a certain number of measurements are collected (so t is
equal to the number of measurements), while in the recursive
estimation of x⋆, the measurements are sequentially available
(so t is increasing) and (6) is solved repeatedly at each time
instance t = 1, 2, . . .

The advantage of (6) over (2), whose objective function
is stochastic and whose calculation depends on unknown
parameters G and b, is that (6) is a sequence of determin-
istic optimization problems whose theoretical and algorith-
mic properties have been extensively investigated and widely

understood. A natural question arises in this context: is (6)
equivalent to (2) in the sense that x(t)

lasso is a strongly consistent
estimator of x⋆, i.e., limt→∞ x

(t)
lasso = x⋆ with probability 1?

The connection between x
(t)
lasso in (6) and the unknown variable

x⋆ is given in the following lemma [14].

Lemma 1. Suppose Assumptions (A1)-(A2) as well as the
following assumption are satisfied for (6):

(A3)
{
µ(t)
}

is a positive sequence converging to 0, i.e.,
µ(t) > 0 and limt→∞ µ(t) = 0.

Then limt→∞ x
(t)
lasso = x⋆ with probability 1.

An example of µ(t) satisfying Assumption (A3) is µ(t) =
α/tβ with α > 0 and β > 0. Typical choices of β are β = 1
and β = 0.5 [14].

Lemma 1 not only states the connection between x
(t)
lasso and

x⋆ from a theoretical perspective, but also suggests a simple
algorithmic solution for problem (2): x⋆ can be estimated by
solving a sequence of deterministic optimization problems (6),
one for each time instance t = 1, 2, . . .. However, different
from RLS in which each update has a closed-form expression,
cf. (3b), problem (6) does not have a closed-form solution
and it can only be solved numerically by iterative algorithm
such as GP [17], l1_ls [18], FISTA [19], ADMM [20], and
FLEXA [21]. As a result, solving (6) repeatedly at each time
instance t = 1, 2, . . . is neither computationally practical nor
real-time applicable. The aim of the following sections is to
develop an algorithm that enjoys easy implementation and fast
convergence.

III. THE ONLINE PARALLEL ALGORITHM

The LASSO problem in (6) is convex, but the objective
function is nondifferentiable and it cannot be minimized in
closed-form, so solving (6) completely w.r.t. all elements of x
by a solver at each time instance t = 1, 2, . . . is neither com-
putationally practical nor suitable for online implementation.
To reduce the complexity of the variable update, an algorithm
based on inexact optimization is proposed in [14]: at time
instance t, only a single element xk with k = mod(t−1,K)+1
is updated by its so-called best response, i.e., L(t)(x) is
minimized w.r.t. xk only: x

(t+1)
k = argminL(t)(xk,x

(t)
−k)

with x−k , (xj)j ̸=k, which can be solved in closed-form,
while the remaining elements {xj}j ̸=k remain unchanged, i.e.,

x
(t+1)
−k = x

(t)
−k. At the next instance t+1, a new sample average

function L(t+1)(x) is formed with newly arriving samples,
and the (k + 1)-th element, xk+1, is updated by minimizing
L(t+1)(x) w.r.t. xk+1 only, while the remaining elements again
are fixed. Although easy to implement, sequential updating
schemes update only a single element at each time instance
and they sometimes suffer from slow convergence when the
number of elements K is large.

To overcome the slow convergence of the sequential update,
we propose an online parallel update scheme, with provable
convergence, in which (6) is solved approximately by simul-
taneously updating all elements only once based on their
individual best response. Given the current estimate x(t) which
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is available before the t-th sample arrives1, the next estimate
x(t+1) is determined based on all the samples collected up to
instance t in a three-step procedure as described next.

Step 1 (Update Direction): In this step, all elements of
x are updated in parallel and the update direction of x at
x = x(t), denoted as x̂(t) − x(t), is determined based on the
best-response x̂(t). For each element of x, say xk, its best
response at x = x(t) is given by:

x̂
(t)
k , argmin

xk

{
L(t)(xk,x

(t)
−k) +

1

2
c
(t)
k (xk − x

(t)
k )2

}
, ∀ k,

(7)
where x−k , {xj}j ̸=k and it is fixed to their values of the
preceding time instance x−k = x

(t)
−k. An additional quadratic

proximal term with c
(t)
k > 0 is included in (7) for numerical

simplicity and stability [22, 23], because it plays an important
role in the convergence analysis of the proposed algorithm;
conceptually it is a penalty (with variable weight c

(t)
k ) for

moving away from the current estimate x
(t)
k .

After substituting (5) into (7), the best-response in (7) can
be expressed in closed-form:

x̂
(t)
k = argmin

xk

{
1
2G

(t)
kkx

2
k − r

(t)
k · xk

+µ(t)|xk|+ 1
2c

(t)
k (xk − x

(t)
k )2

}

=
Sµ(t)(r

(t)
k + c

(t)
k x

(t)
k )

G
(t)
kk + c

(t)
k

, k = 1, . . . ,K, (8)

where
r
(t)
k , b

(t)
k −

∑
j ̸=k

G
(t)
kj x

(t)
j , (9)

and
Sa(b) , (b− a)+ − (−b− a)+

is the well-known soft-thresholding operator [19, 26]. From
the definition of G(t) in (4), G(t) ≽ 0 and G

(t)
kk ≥ 0 for all

k, so the division in (8) is well-defined.
Given the update direction x̂(t) − x(t), an intermediate

update vector x̃(t)(γ) is defined:

x̃(t)(γ) = x(t) + γ(x̂(t) − x(t)), (10)

where x̂(t) = (x̂
(t)
k )Kk=1 and γ ∈ [0, 1] is the stepsize. The

update direction x̂(t) − x(t) is a descent direction of L(t)(x)
in the sense specified by the following proposition.

Proposition 2 (Descent Direction). For x̂(t) = (x̂
(t)
k )Kk=1

given in (8) and the update direction x̂(t)−x(t), the following
holds for any γ ∈ [0, 1]:

L(t)(x̃(t)(γ))− L(t)(x(t))

≤ −γ
(
c
(t)
min − 1

2λmax(G
(t))γ

)∥∥x̂(t) − x(t)
∥∥2
2
, (11)

where c
(t)
min , mink

{
G

(t)
kk + c

(t)
k

}
> 0.

Proof: The proof follows the general line of arguments
in [21, Prop. 8(c)] and is thus omitted here.

Step 2 (Stepsize): In this step, the stepsize γ in (10) is
determined so that fast convergence is observed. It is easy to

1x(1) could be arbitrarily chosen, e.g., x(1) = 0.

see from (11) that for sufficiently small γ, the right hand side
of (11) becomes negative and L(t)(x) decreases as compared
to x = x(t). Thus, to minimize L(t)(x), a natural choice of
the stepsize rule is the so-called “minimization rule” [27, Sec.
2.2.1] (also known as the “exact line search” [28, Sec. 9.2]),
which is the stepsize, denoted as γ

(t)
opt , that decreases L(t)(x)

to the largest extent along the direction x̂(t)−x(t) at x = x(t):

γ
(t)
opt = argmin

0≤γ≤1

{
L(t)(x̃(t)(γ))− L(t)(x(t))

}
= argmin

0≤γ≤1

{
L(t)(x(t) + γ(x̂(t) − x(t)))− L(t)(x(t))

}
= argmin

0≤γ≤1


1
2 (x̂

(t) − x(t))TG(t)(x̂(t) − x(t)) · γ2

+(G(t)x(t) − b(t))T (x̂(t) − x(t)) · γ
+µ(t)(

∥∥x(t) + γ(x̂(t) − x(t))
∥∥
1
−
∥∥x(t)

∥∥
1
)

.
(12)

Therefore by definition of γ(t)
opt we have for any γ ∈ [0, 1]:

L(t)(x(t) + γ
(t)
opt (x̂

(t) − x(t))) ≤ L(t)(x(t) + γ(x̂(t) − x(t))).
(13)

The difficulty with the standard minimization rule (12) is the
complexity of solving the optimization problem in (12), since
the presence of the ℓ1-norm makes it impossible to find a
closed-form solution and the problem in (12) can only be
solved numerically by a solver such as SeDuMi [29].

To obtain a stepsize with a good trade off between con-
vergence speed and computational complexity, we propose a
simplified minimization rule which yields fast convergence but
can be computed at a low complexity. Firstly it follows from
the convexity of norm functions that for any γ ∈ [0, 1]:

µ(t)(
∥∥x(t) + γ(x̂(t) − x(t))

∥∥
1
−
∥∥x(t)

∥∥
1
)

= µ(t)
∥∥(1− γ)x(t) + γx̂(t)

∥∥
1
− µ(t)

∥∥x(t)
∥∥
1

≤ (1− γ)µ(t)
∥∥x(t)

∥∥
1
+ γµ(t)

∥∥x̂(t)
∥∥
1
− µ(t)

∥∥x(t)
∥∥
1

(14a)

= µ(t)(
∥∥x̂(t)

∥∥
1
−
∥∥x(t)

∥∥
1
) · γ. (14b)

The right hand side of (14b) is linear in γ, and equality is
achieved in (14a) either when γ = 0 or γ = 1.

In the proposed simplified minimization rule, instead of
directly minimizing L(t)(x̃(t)(γ))−L(t)(x(t)) over γ, its upper
bound based on (14) is minimized and γ(t) is given by

γ(t) , argmin
0≤γ≤1


1
2 (x̂

(t) − x(t))TG(t)(x̂(t) − x(t)) · γ2

+(G(t)x(t) − b(t))T (x̂(t) − x(t)) · γ
+µ(t)(

∥∥x̂(t)
∥∥
1
−
∥∥x(t)

∥∥
1
) · γ

 ,

(15)
The scalar problem in (15) consists in a convex quadratic
objective function along with a bound constraint and it has
a closed-form solution, given by (16) at the top of the next
page, where [x]10 , min(max(x, 0), 1) denotes the projection
of x onto [0, 1], and obtained by projecting the unconstrained
optimal variable of the convex quadratic scalar problem in (15)
onto the interval [0, 1].

The advantage of minimizing the upper bound function of
L(t)(x̃(t)(γ)) in (15) is that the optimal γ, denoted as γ(t),
always has a closed-form expression, cf. (16). At the same
time, it also yields a decrease in L(t)(x) at x = x(t) as the
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γ(t) =

[
−
(G(t)x(t) − b(t))T (x̂(t) − x(t)) + µ(t)(

∥∥x̂(t)
∥∥
1
−
∥∥x(t)

∥∥
1
)

(x̂(t) − x(t))TG(t)(x̂(t) − x(t))

]1
0

(16)

standard minimization rule γ
(t)
opt (12) does in (13), and this

decreasing property is stated in the following proposition.

Proposition 3. Given x̃(t)(γ) and γ(t) defined in (10) and
(15), respectively, the following holds:

L(t)(x̃(t)(γ(t))) ≤ L(t)(x(t)),

and equality is achieved if and only if γ(t) = 0.

Proof: Denote the objective function in (15) as
L
(t)
(x̃(t)(γ)). It follows from (14) that

L(t)(x̃(t)(γ(t)))− L(t)(x(t)) ≤ L
(t)
(x̃(t)(γ(t))), (17)

and equality in (17) is achieved when γ(t) = 0 and γ(t) = 1.
Besides, it follows from the definition of γ(t) that

L
(t)
(x̃(t)(γ(t))) ≤ L

(t)
(x̃(t)(γ))

∣∣
γ=0

= L(t)(x(t)). (18)

Since the optimization problem in (15) has a unique optimal
solution γ(t) given by (16), equality in (18) is achieved if and
only if γ(t) = 0. Finally, combining (17) and (18) yields the
conclusion stated in the proposition.

The signaling required to perform (16) (and also (8)) will
be discussed in Section IV.

Step 3 (Dynamic Reset): In this step, the next estimate
x(t+1) is defined based on x̃(t)(γ(t)) given in (10) and (16).
We first remark that x̃(t)(γ(t)) is not necessarily the solution
of the optimization problem in (6), i.e.,

L(t)(x̃(t)(γ(t))) ≥ L(t)(x
(t)
lasso) = min

x
L(t)(x).

This is because x is updated only once from x = xt to x =
x̃(t)(γ(t)), which in general can be further improved unless
x̃(t)(γ(t)) already minimizes L(t)(x), i.e., x̃(t)(γ(t)) = x

(t)
lasso.

The definitions of L(t)(x) and x
(t)
lasso in (5)-(6) reveal that

0 = L(t)(x)
∣∣
x=0

≥ L(t)(x
(t)
lasso), t = 1, 2, . . . .

However, L(t)(x̃(t)(γ(t))) may be larger than 0 and x̃(t)(γ(t))
is not necessarily better than the point 0. Therefore we define
the next estimate x(t+1) to be the best between the two points
x̃(t)(γ(t)) and 0:

x(t+1) = argmin
x∈{x̃(t+1),0}

L(t)(x)

=

{
x̃(t)(γ(t)), if L(t)(x̃(t)(γ(t))) ≤ L(t)(0) = 0,

0, otherwise,
(19)

and it is straightforward to infer the following relationship
among x(t), x̃(t)(γ(t)), x(t+1) and x

(t)
lasso:

L(t)(x(t)) ≥ L(t)(x̃(t)(γ(t))) ≥ L(t)(x(t+1)) ≥ L(t)(x
(t)
lasso).

Moreover, the dynamic reset (19) guarantees that

x(t+1) ∈
{
x : L(t)(x) ≤ 0

}
, t = 1, 2, . . . , (20)

Algorithm 1: The Online Parallel Algorithm

Initialization: x(1) = 0, t = 1.
At each time instance t = 1, 2, . . .:
Step 1: Calculate x̂(t) according to (8).
Step 2: Calculate γ(t) according to (16).
Step 3-1: Calculate x̃(t)(γ(t)) according to (10).
Step 3-2: Update x(t+1) according to (19).

Since limt→∞ G(t) ≻ 0 and b(t) converges from Assumptions
(A1)-(A2), (20) guarantees that

{
x(t)

}
is a bounded sequence.

To summarize the above development, the proposed online
parallel algorithm is formally described in Algorithm 1, and
its convergence properties are given in the following theorem.

Theorem 4 (Strong Consistency). Suppose Assumptions
(A1)-(A3) as well as the following assumptions are satisfied:
(A4) Both gn and vn have bounded moments;
(A5) G

(t)
kk + c

(t)
k ≥ c for some c > 0;

(A6) The sequence {µ(t)} is nonincreasing, i.e., µ(t) ≥
µ(t+1).

Then x(t) is a strongly consistent estimator of x⋆, i.e.,
limt→∞ x(t) = x⋆ with probability 1.

Proof: See Appendix A.
Assumption (A4) is standard on random variables and is

usually satisfied in practice. We can see from Assumption (A5)
that if there already exists some c > 0 such that G(t)

kk ≥ c for
all t, the quadratic proximal term in (7) is no longer needed,
i.e., we can set c(t)k = 0 without affecting convergence. This is
the case when t is sufficiently large because limt→∞ G(t) ≻ 0.
In practice it may be difficult to decide if t is large enough,
so we can just assign a small value to c

(t)
k for all t in order

to guarantee the convergence. As for Assumption (A6), it is
satisfied by the previously mentioned choices of µ(t), e.g.,
µ(t) = α/tβ with α > 0 and 0.5 ≤ β ≤ 1.

Theorem 4 establishes that there is no loss of strong
consistency if at each time instance, (6) is solved only ap-
proximately by updating all elements simultaneously based
on best-response only once. In what follows, we comment on
some of the desirable features of Algorithm 1 that make it
appealing in practice:

i) Algorithm 1 belongs to the class of parallel algorithms
where all elements are updated simultaneously each time.
Compared with sequential algorithms where only one element
is updated at each time instance [14], the improvement in
convergence speed is notable, especially when the signal
dimension is large.

ii) Algorithm 1 is easy to implement and suitable for online
implementation, since both the computations of the best-
response and the stepsize have closed-form expressions. With
the simplified minimization stepsize rule, notable decrease in
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objective function value is achieved after each variable update,
and the trouble of tuning the decay rate of the diminishing
stepsize as required in [23] is also saved. Most importantly,
the algorithm may not converge under decreasing stepsizes.

iii) Algorithm 1 converges under milder assumptions than
state-of-the-art algorithms. The regression vector gn and noise
vn do not need to be uniformly bounded, which is required
in [30, 31] and which is not satisfied in case of unbounded
distribution, e.g., the Gaussian distribution.

IV. IMPLEMENTATION AND EXTENSIONS

A. A special case: x⋆ ≥ 0

The proposed Algorithm 1 can be further simplified if
x⋆, the signal to be estimated, has additional properties. For
example, in the context of CR studied in [7], x⋆ represents
the power vector and it is by definition always nonnegative.
In this case, a nonnegative constraint on xk in (7) is needed:

x̂
(t)
k = argmin

xk≥0

{
L(t)(xk,x

(t)
−k) +

1

2
c
(t)
k (xk − x

(t)
k )2

}
, ∀ k,

and the best-response x̂
(t)
k in (8) is simplified to

x̂
(t)
k =

[
r
(t)
k + c

(t)
k x

(t)
k − µ(t)

]+
G

(t)
kk + c

(t)
k

, k = 1, . . . ,K.

Furthermore, since both x(t) and x̂(t) are nonnegative, we have

x(t) + γ(x̂(t) − x(t)) ≥ 0, 0 ≤ γ ≤ 1,

and

∥∥x(t) + γ(x̂(t) − x(t))
∥∥
1
=

K∑
k=1

|x(t)
k + γ(x̂

(t)
k − x

(t)
k )|

=
K∑

k=1

x
(t)
k + γ(x̂

(t)
k − x

(t)
k ).

Therefore the standard minimization rule (12) can be adopted
directly and the stepsize is accordingly given as

γ(t) =

[
− (G(t)x(t) − b(t) + µ(t)1)T (x̂(t) − x(t))

(x̂(t) − x(t))TG(t)(x̂(t) − x(t))

]1
0

,

where 1 is a vector with all elements equal to 1.

B. Implementation issues and complexity analysis

Algorithm 1 can be implemented in both a centralized and
a distributed network architecture. To ease the exposition, we
discuss the implementation issues in the context of WSN with
a total number of N sensors. The discussion for CR is similar
and thus not duplicated here.

Network with a fusion center: The fusion center performs
the computation of (8) and (16). To do this, the signaling
from sensors to the fusion center is required: at each time
instance t, each sensor n sends (g

(t)
n , y

(t)
n ) ∈ RK+1 to the

equation + × ÷ min(a, b)
(21a) (K2 +K)/2 (N + 1)(K2 +K)/2 — —
(21b) NK (N + 1)K — —

(9) 2K K2 +K — —
(8) 5K K K 2K
(16) 6K − 2 K2 + 4K 1 2K + 2

Table I
COMPUTATIONAL COMPLEXITY OF ALGORITHM 1

fusion center. Note that G(t) and b(t) defined in (4) can be
updated recursively:

G(t) =
t− 1

t
G(t−1) +

1

t

N∑
n=1

g(t)
n (g(t)

n )T , (21a)

b(t) =
t− 1

t
b(t−1) +

1

t

N∑
n=1

y(t)n g(t)
n . (21b)

After updating x according to (8) and (16), the fusion center
broadcasts x(t+1) ∈ RK to all sensors.

We discuss next the computational complexity of Algorithm
1. Note that in (21), the normalization by t is not really compu-
tationally necessary because they appear in both the numerator
and denominator and thus cancel each other in the division in
(8) and (16). Computing (21a) requires (N + 1)(K2 +K)/2
multiplications and (K2 +K)/2 additions. To perform (21b),
(N + 1)K multiplications and NK additions are needed.
Associated with the computation of r(t) in (9) are K2 + K
multiplications and 2K additions. Then in (8), 5K additions,
K multiplications and K divisions are required. The projection
in (8) also requires 2K number comparisons. To compute
(16), first note that G(t)x(t)−b(t) can be recovered from r(t)

because G(t)x(t)−b(t) = d(G(t))◦x(t)−r(t) and computing
∥x∥1 requires K number comparisons and K − 1 additions,
so what are requested in total are K2 + 4K multiplications,
6K−2 additions, 1 addition, and 2K+2 number comparisons
(the projection needs at most 2 number comparisons). The
above analysis is summarized in Table I, and one can see that
the complexity is at the order of K2, which is as same as
traditional RLS [11, Ch. 14].

Network without a fusion center: In this case, the compu-
tational tasks are evenly distributed among the sensors and
the computation of (8) and (16) is performed locally by each
sensor at the price of (limited) signaling exchange among
different sensors.

We first define the following sensor-specific variables G
(t)
n

and b̃
(t)
n for sensor n as follows:

G(t)
n , 1

t

t∑
τ=1

g(τ)
n (g(τ)

n )T , and b(t)
n =

1

t

t∑
τ=1

y(t)n g(t)
n ,

so that G(t) =
∑N

n=1 G
(t)
n and b(t) =

∑N
n=1 b

(t)
n . Note that

G
(t)
n and b

(t)
n can be computed locally by sensor n and no

signaling exchange is required. It is also easy to verify that,
similar to (21), G(t)

n and b
(t)
n can be updated recursively by

sensor n, so the sensors do not have to store all past data.
The message passing among sensors in carried out in two

phases. Firstly, for sensor n, to perform (8), d(G(t)) and r(t)
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are required, and they can be decomposed as follows:

d(G(t)) =
N∑

n=1

d(G(t)
n ) ∈ RK , (22a)

G(t)x(t) − b(t) =

N∑
n=1

(
G(t)

n x(t) − b(t)
n

)
∈ RK . (22b)

Furthermore, to determine the stepsize as in (16) and to
compare L(t)(x̃(t)(γ(t))) with 0, the following variables are
required at sensor n:

G(t)x(t) =
N∑

n=1

G(t)
n x(t) ∈ RK (22c)

G(t)x̂(t) =

N∑
n=1

G(t)
n x̂(t) ∈ RK , (22d)

and

(G(t)x(t) − b(t))T (x̂(t) − x(t))

=

(
N∑

n=1

(G(t)
n x(t) − b(t)

n )

)T

(x̂(t) − x(t)),

(22e)

but computing (22e) does not require any additional signaling
since

∑N
n=1(G

(t)
n x(t) −b

(t)
n ) is already available from (22b).

Note that L(t)(x̃(t)(γ(t))) can be computed from (22b)-(22d)
because

L(t)(x̃(t)(γ(t))) =
1

2
(x̃(t)(γ(t)))TG(t)x̃(t)(γ(t))

− (b(t))T x̃(t)(γ(t)) + µ(t)
∥∥x̃(t)(γ(t))

∥∥
1

=
1

2
(x̃(t)(γ(t)))T (G(t)x̃(t)(γ(t))− 2b(t))

+µ(t)
∥∥x̃(t)(γ(t))

∥∥
1

=
1

2
(x̃(t)(γ(t)))T (2(G(t)x(t) − b(t))−G(t)x(t)

+γ(t)G(t)(x̂(t) − x(t))) + µ(t)
∥∥x̃(t)(γ(t))

∥∥
1
,

where G(t)x(t)−b(t) comes from (22b), G(t)x(t) comes from
(22c), and G(t)(x̂(t) − x(t)) comes from (22c)-(22d).

To summarize, in the first phase, each node needs
to exchange (d(G

(t)
n ),G

(t)
n x(t) − b

(t)
n ) ∈ R2K×1, while

in the second phase, the sensors need to exchange
(G

(t)
n x(t),G

(t)
n x̂(t)) ∈ R2K×1; thus the total signaling at

each time instance is a vector of the size 4K. The signaling
exchange can be implemented in a distributed manner by,
for example, consensus algorithms, which converge if the
graph representing the links among the sensors is connected.
A detailed discussion, however, is beyond the scope of this
paper, and interested readers are referred to [1] for a more
comprehensive introduction.

Now we compare Algorithm 1 with state-of-the-art dis-
tributed algorithms in terms of signaling exchange.

1) The signaling exchange of Algorithm 1 is much less than
that in [1]. In [1, Alg. A.5], problem (6) is solved completely
for each time instance, so it is essentially a double layer
algorithm: in the inner layer, an iterative algorithm is used

to solve (6) while in the outer layer t is increased to t + 1
and (6) is solved again. In each iteration of the inner layer, a
vector of the size 2K is exchanged among the sensors, and
this is repeated until the termination of the inner layer (which
typically takes many iterations), leading to a much heavier
signaling burden than the proposed algorithm.

2) A distributed implementation of the online sequential
algorithm in [14] is also proposed in [7]. It is a double layer
algorithm, and in each iteration of the inner layer, a vector with
the same order of size as Algorithm 1 is exchanged among
the sensors. Similar to [1], this has to be repeated until the
convergence of the inner layer.

We also remark that in consensus-based distributed algo-
rithms [8, 7, 1], the estimate decision of each sensor depends
mainly on its own local information and those local estimates
maintained by different sensors are usually different, which
may lead to conflicting interests of the PUs (i.e., some may
correctly detect the presence of PUs but some may not, so the
PUs may still be interfered); an agreement (i.e., convergence)
is reached only when t goes to infinity [28]. By comparison,
in the proposed algorithm, all sensors update the estimate
according to the same expression (8) and (16) based on the
information jointly collected by all sensors, so they have the
same estimate of the unknown variable all the time and the
QoS of PUs are better protected.

C. Time- and norm-weighted sparsity regularization

For a given vector x, its support Sx is defined as the set of
indices of nonzero elements:

Sx , {1 ≤ k ≤ K : xk ̸= 0}.

Suppose without loss of generality Sx⋆ = {1, 2, . . . , ∥x⋆∥0},
where ∥x∥0 is the number of nonzero elements of x. It is
shown in [14] that the time-weighted sparsity regularization (6)
does not make x

(t)
lasso satisfy the so-called “oracle properties”,

which consist of support consistency, i.e.,

lim
t→∞

Prob
[
S
x
(t)
lasso

= Sx⋆

]
= 1,

and
√
t-estimation consistency, i.e.,

√
t(x

(t)
lasso,1:∥x⋆∥0

− x⋆
1:∥x⋆∥0

) →d N (0, σ2G1:∥x⋆∥0,1:∥x⋆∥0
),

where →d means convergence in distribution and G1:k,1:k ∈
Rk×k is the upper left block of G.

To make the estimation satisfy the oracle properties, it was
suggested in [14] that a time- and norm-weighted lasso be
used, and the loss function L(t)(x) in (5) be modified as
follows:

L(t)(x) =
1

t

t∑
τ=1

N∑
n=1

(y(τ)n − (g(τ)
n )Tx)2

+ µ(t)
K∑

k=1

Wµ(t)(|x(t)
rls,k|) · |xk|, (23)

where:
• x

(t)
rls is given in (3);
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• limt→∞ µ(t) = 0 and limt→∞
√
t · µ(t) = ∞, so µ(t)

must decrease slower than 1/
√
t;

• The weight factor Wµ(x) is defined as

Wµ(x) ,


1, if x ≤ µ,
aµ−x
(a−1)µ , if µ ≤ x ≤ aµ,

0, if x ≥ aµ,

where a > 1 is a given constant. Therefore, the value of
the weight function µ(t)Wµ(t)(|x(t)

rls,k|) in (23) depends on
the relative magnitude of µ(t) and x

(t)
rls,k.

After replacing the universal sparsity regularization gain µ(t)

for element xk in (8) and (16) by Wµ(t)(
∣∣x(t)

rls,k

∣∣), Algorithm 1
can readily be applied to estimate x⋆ based on the time- and
norm-weighted loss function (23) and the strong consistency
holds as well. To see this, we only need to verify the nonin-
creasing property of the weight function µ(t)Wµ(t)(|x(t)

rls,k|).
We remark that when t is sufficiently large, it is either
µ(t)Wµ(t)(|x(t)

rls,k|) = 0 or µ(t)Wµ(t)(|x(t)
rls,k|) = µ(t). This is

because limt→∞ x
(t)
rls = x⋆ under the conditions of Lemma 1.

If x⋆
k > 0, since limt→∞ µ(t) = 0, we have for any arbitrarily

small ϵ > 0 some t0 that aµ(t) < x⋆
k − ϵ for all t ≥ t0;

the weight factor in this case is 0 for all t ≥ t0, and the
nonincreasing property is automatically satisfied. If, on the
other hand, x⋆

k = 0, then x
(t)
rls converges to x⋆

k = 0 at a speed
of 1/

√
t [32]. Since µ(t) decreases slower than 1/

√
t, we have

for some t0 such that x(t)
rls,k < µ(t) for all t ≥ t0; in this case,

Wµ(t)(x
(t)
rls,k) is equal to 1 and the weight factor is simply µ(t)

for all t ≥ t0, which is nonincreasing.

D. Recursive estimation of time-varying signals

If the signal to be estimated is time-varying, the loss
function (5) needs to be modified in a way such that the new
measurement samples are given more weight than the old ones.
Defining the so-called “forgetting factor” β, where 0 < β < 1,
the new loss function is given as follows [11, 14, 1]:

min
x

1

2t

N∑
n=1

t∑
τ=1

βt−τ ((g(τ)
n )Tx− y(τ)n )2 + µ(t) ∥x∥1 , (24)

and as expected, when β = 1, (24) is as same as (5). In this
case, the only modification to Algorithm 1 is that G(t) and
b(t) are updated according to the following recursive rule:

G(t) =
1

t

(
(t− 1)βG(t−1) +

N∑
n=1

g(t)
n (g(t)

n )T

)
,

b(t) =
1

t

(
(t− 1)βb(t−1) +

N∑
n=1

y(t)n g(t)
n

)
.

For problem (24), since the signal to be estimated is time-
varying, the convergence analysis in Theorem 4 does not hold
any more. However, simulation results show there is little loss
of optimality when optimizing (24) only approximately by
Algorithm 1. This establishes the superiority of the proposed
algorithm over the distributed algorithm in [1] which solves
(24) exactly at the price of a large delay and a large signaling
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Figure 1. Convergence behavior in terms of objective function value.

burden. Besides, despite the lack of theoretical analysis, Al-
gorithm 1 performs better than the online sequential algorithm
[14] numerically, cf. Figure 6 in Section V.

V. NUMERICAL RESULTS

In this section, the desirable features of the proposed
algorithm are illustrated numerically.

We first test the convergence behavior of Algorithm 1
with the online sequential algorithm proposed in [14]. In this
example, the parameters are selected as follows:

• N = 1, so the subscript n is omitted.
• the dimension of x⋆: K = 100;
• the density of x⋆: 0.1;
• Both g and v are generated by i.i.d. standard normal

distributions: g ∈ CN (0, I) and v ∈ CN (0, 0.2);
• The sparsity regularization gain µ(t) =

√
K/t = 10/t;

• Unless otherwise stated, the simulations results are aver-
aged over 100 realizations.

We plot in Figure 1 the relative error in objective value
(L(t)(x(t))−L(t)(x

(t)
lasso))/L

(t)(x
(t)
lasso) versus the time instance

t, where 1) x
(t)
lasso is defined in (6) and calculated by MOSEK

[33]; 2) x(t) is returned by Algorithm 1 in the proposed online
parallel algorithm; 3) x(t) is returned by [14, Algorithm 1]
in online sequential algorithm; and 4) x(1) = 0 for both
parallel and sequential algorithms. Note that L(t)(x

(t)
lasso) is

by definition the lower bound of L(t)(x) and L(t)(x(t)) −
L(t)(x

(t)
lasso) ≥ 0 for all t. From Figure 1 it is clear that the

proposed algorithm (black curve) converges to a precision of
10−2 in less than 200 instances while the sequential algorithm
(blue curve) needs more than 800 instances. The improvement
in convergence speed is thus notable. If the precision is set
as 10−4, the sequential algorithm does not even converge in
a reasonable number of instances. Therefore, the proposed
online parallel algorithm outperforms in both convergence
speed and solution quality.

We also evaluate in Figure 1 the performance loss incurred
by the simplified minimization rule (15) (indicated by the
black curve) compared with the standard minimization rule
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Figure 2. Convergence behavior in terms of relative square error.
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Figure 3. Comparison of original signal and estimated signal.

(12) (indicated by the red curve). It is easy to see from Figure
1 that these two curves almost coincide with each other, so the
extent to which the simplified minimization rule decreases the
objective function is nearly as same as standard minimization
rule and the performance loss is negligible.

Then we consider in Figure 2 the relative square error∥∥x(t) − x⋆
∥∥2
2
/ ∥x⋆∥22 versus the time instance t, where the

benchmark is
∥∥x(t)

lasso − x⋆
∥∥2
2
/ ∥x⋆∥22, i.e., the recursive Lasso

(6). To compare the estimation approaches with and without
sparsity regularization, RLS in (6) is also implemented, where
a ℓ2 regularization term (10−4/t) · ∥x∥22 is included into (6)
when G(t) is singular. We see that the relative square error
of the proposed online parallel algorithm quickly reaches the
benchmark (recursive lasso) in about 100 instances, while the
sequential algorithm needs about 800 instances. The improve-
ment in convergence speed is consolidated again. Another
notable feature is that, the relative square error of the proposed
algorithm is always decreasing, even in beginning instances,
while the relative square error of the sequential algorithm is
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Figure 4. Stepsize error of the simplified minimization rule.
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Figure 5. Weight factor in time- and norm-weighted sparsity regularization.

not: in the first 100 instances, the relative square error is
actually increasing. Recall the signal dimension (K = 100),
we infer that the relative square error starts to decrease only
after each element has been updated once. What is more,
estimation with sparsity regularization performs better than the
classic RLS approach because they exploit the a prior sparsity
of the to-be-estimated signal x⋆. The precision of the estimated
signal by the proposed online parallel algorithm (after 1000
time instances) is also shown element-wise in Figure 3, from
which we observe that both the zeros and the nonzero elements
of the original signal x⋆ are estimated accurately.

We now compare the proposed simplified minimization rule
(cf. (15)-(16)), coined as stepsize_simplified, with the standard
minimization rule (cf. (12)), coined as stepsize_optimal, in
terms of the stepsize error defined as follows:

stepsize_simplified-stepsize_optimal
stepsize_optimal

× 100%.

In addition to the above parameter where µ(t) = 10/t (in the
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Figure 6. Relative square error for recursive estimation of time-varying
signals

lower subplot), we also simulate the case when µ(t) = 1/t
(in the upper subplot). We see from Figure 4 that the stepsize
error is reasonably small, namely, mainly in the interval [-
5%,5%], while only a few of beginning instances are outside
this region, so the simplified minimization rule achieves a good
trade-off between performance and complexity. Comparing the
two subplots, we find that, as expected, the stepsize error
depends on the value of µ. We can also infer that the simplified
minimization rule tends to overestimate the optimal stepsize.

In Figure 5 we simulate the weight factor Wµ(t)(|x(t)
rls,k|)

versus the time instance t in time- and norm-weighted sparsity
regularization, where k = 1 in the upper plot and k = 11
in the lower plot. The parameters are as same as the above
examples, except that µ(t) = 1/t0.4 and x⋆ are generated such
that the first 0.1 × K elements (where 0.1 is the density of
x⋆) are nonzero while all other elements are zero. The weight
factors of other elements are omitted because they exhibit
similar behavior as the ones plotted in Figure 5. As analyzed,
Wµ(t)(|w(t)

rls,1|), the weight factor of the first element, where
x⋆
1 ̸= 0, quickly converges to 0, while Wµ(t)(|w(t)

rls,11|), the
weight factor of the eleventh element, where x⋆

1 = 0 , quickly
converges to 1, making the overall weight factor monotonically
decreasing, cf. (23). Therefore the proposed algorithm can
readily be applied to the recursive estimation of sparse signals
with time- and norm-weighted regularization.

When the signal to be estimated is time-varying, the theoret-
ical analysis of the proposed algorithm is not valid anymore,
but we can test numerically how the proposed algorithm
performs compared with the online sequential algorithm. The
time-varying unknown signal is denoted as x⋆

t , and it is
changing according to the following law:

x⋆
t+1,k = αx⋆

t,k + wt,k,

where wt,k ∼ CN (0, 1 − α2) for any k such that x⋆
t,k ̸= 0,

with α = 0.99 and β = 0.9. In Figure 6, the relative
square error ∥xt − x⋆

t ∥
2
2 / ∥x⋆

t ∥
2
2 is plotted versus the time

instance. Despite the lack of theoretical consolidation, we

observe the online parallel algorithm is almost as same as
the pseudo-online algorithm, so the inexact optimization is
not an impeding factor for the estimation accuracy. This also
consolidates the superiority of the proposed algorithm over
[1] where a distributed iterative algorithm is employed to
solve (24) exactly, which inevitably incurs a large delay and
extensive signaling.

VI. CONCLUDING REMARKS

In this paper, we have considered the recursive estimation
of sparse signals and proposed an online parallel algorithm
with provable convergence. The algorithm is based on inexact
optimization with an increasing accuracy and parallel update
of all elements at each time instance, where both the update
direction and the stepsize can be calculated in closed-form
expressions. The proposed simplified minimization stepsize
rule is well motivated and easily implementable, achieving
a good trade-off between complexity and convergence speed,
and avoiding the common drawbacks of the decreasing step-
sizes used in literature. Simulation results consolidate the
notable improvement in convergence speed over state-of-the-
art techniques, and they also show that the loss in convergence
speed compared with the full version (where the lasso problem
is solved exactly at each time instance) is negligible. We
have also considered numerically the recursive estimation of
time-varying signals where theoretical convergence do not
necessarily hold, and the proposed algorithm works better than
state-of-the-art algorithms.

APPENDIX A
PROOF OF THEOREM 4

Proof: It is easy to see that L(t) can be divided into a
smooth part f (t)(x) and a nonsmooth part h(t)(x):

f (t)(x) , 1

2
xTG(t)x− (b(t))Tx, (25a)

h(t)(x) , µ(t) ∥x∥1 . (25b)

We also use f
(t)
k (x;x(t)) to denote the smooth part of the

objective function in (8):

f
(t)
k (x;x(t)) , 1

2
G

(t)
kkx

2 − r
(t)
k · x+

1

2
c
(t)
k (x− x

(t)
k )2. (26)

Functions f
(t)
k (x;x(t)) and f (t)(x) are related according to

the following equation:

f
(t)
k (xk;x

(t)) = f (t)(xk,x
(t)
−k) +

1

2
c(t)(xk − x

(t)
k )2, (27)

from which it is easy to infer that ∇f
(t)
k (x

(t)
k ;x(t)) =

∇kf
(t)(x(t)). Then from the first-order optimality condition,

h(t)(xk) has a subgradient ξ
(t)
k ∈ ∂h(t)(x̂

(t)
k ) at xk = x̂

(t)
k

such that for any xk:

(xk − x̂
(t)
k )(∇f

(t)
k (x̂

(t)
k ;x(t)) + ξ

(t)
k ) ≥ 0, ∀k. (28)

Now consider the following equation:

L(t)(x(t+1))− L(t−1)(x(t)) =

L(t)(x(t+1))− L(t)(x(t)) + L(t)(x(t))− L(t−1)(x(t)).
(29)
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The rest of the proof consists of three parts. Firstly we prove
that there exists a constant η > 0 such that L(t)(x(t+1)) −
L(t)(x(t)) ≤ −η

∥∥x̂(t) − x(t)
∥∥2
2
. Then we show that the

sequence
{
L(t)(x(t+1))

}
t

converges. Finally we prove that
any limit point of the sequence

{
x(t)

}
t

is a solution of (2).

Part 1) Since c
(t)
min ≥ c > 0 for all t (c(t)min is defined in

Proposition 2) from Assumption (A5), it is easy to see from
(11) that the following is true:

L(t)(x(t) + γ(x̂(t) − x(t)))− L(t)(x(t))

≤ − γ
(
c− 1

2
λmax(G

(t))γ
)∥∥x̂(t) − x(t)

∥∥2
2
, 0 ≤ γ ≤ 1.

Since λmax(•) is a continuous function [34] and G(t) con-
verges to a positive definite matrix by Assumption (A1), there
exists a λ̄ < +∞ such that λ̄ ≥ λmax(G

(t)) for all t. We thus
conclude from the preceding inequality that for all 0 ≤ λ ≤ 1:

L(t)(x(t) + γ(x̂(t) − x(t)))− L(t)(x(t))

≤− γ

(
c− 1

2
λ̄γ

)∥∥x̂(t) − x(t)
∥∥2
2
. (30)

It follows from (14), (15) and (30) that

L(t)(x̃(t+1))

≤ f (t)(x(t) + γ(t)(x̂(t) − x(t)))

+ (1− γ(t))h(t)(x(t)) + γ(t)h(t)(x̂(t)) (31)

≤ f (t)(x(t) + γ(x̂(t) − x(t)))

+ (1− γ)h(t)(x(t)) + γh(t)(x̂(t)) (32)

≤ L(t)(x(t))− γ(c− 1

2
λ̄γ)
∥∥x̂(t) − x(t)

∥∥2
2
. (33)

Since the inequalities in (33) are true for any 0 ≤ γ ≤ 1, we
set γ = min(c/λ̄, 1). Then it is possible to show that there is
a constant η > 0 such that

L(t)(x(t+1))− L(t)(x(t)) ≤ L(t)(x̃(t+1))− L(t)(x(t))

≤ −η
∥∥x̂(t) − x(t)

∥∥2
2
. (34)

Besides, because of Step 3 in Algorithm 1, x(t+1) is in the
following lower level set of L(t)(x):

L(t)
≤0 , {x : L(t)(x) ≤ 0}. (35)

Because ∥x∥1 ≥ 0 for any x, (35) is a subset of{
x :

1

2
xTG(t)x− (b(t))Tx ≤ 0

}
,

which is a subset of

L̄(t)
≤0 ,

{
x :

1

2
λmax(G

(t)) ∥x∥22 − (b(t))Tx ≤ 0

}
. (36)

Since G(t) and b(t) converges and limt→∞ G(t) ≻ 0, there
exists a bounded set, denoted as L≤0, such that L(t)

≤0 ⊆ L̄(t)
≤0 ⊆

L≤0 for all t; thus the sequence {x(t)} is bounded and we
denote its upper bound as x̄.

Part 2) Combining (29) and (34), we have the following:

L(t+1)(x(t+2))−L(t)(x(t+1))

≤L(t+1)(x(t+1))−L(t)(x(t+1))

= f (t+1)(x(t+1))−f (t)(x(t+1))+h(t+1)(x(t+1))−h(t)(x(t+1))

≤ f (t+1)(x(t+1))−f (t)(x(t+1)), (37)

where the last inequality comes from the decreasing property
of µ(t) by Assumption (A6). Recalling the definition of f (t)(x)
in (25), it is easy to see that

(t+ 1)(f (t+1)(x(t+1))− f (t)(x(t+1)))

= l(t+1)(x(t+1))− 1

t

t∑
τ=1

l(τ)(x(t+1)),

where

l(t)(x) ,
N∑

n=1

(y(t)n − (g(t)
n )Tx)2.

Taking the expectation of the preceding equation with
respect to {y(t+1)

n ,g
(t+1)
n }Nn=1, conditioned on the natural

history up to time t+ 1, denoted as F (t+1):

F (t+1) ={
x(0), . . . ,x(t+1),

{
g
(0)
n , . . . ,g

(t)
n

}
n
,
{
y
(0)
n , . . . , y

(t)
n

}
n

}
,

we have

E
[
(t+ 1)(f (t+1)(x(t+1))− f (t)(x(t+1)))|F (t+1)

]
= E

[
l(t+1)(x(t+1))|F (t+1)

]
− 1

t

t∑
τ=1

E
[
l(τ)(x(t+1))|F (t+1)

]
= E

[
l(t+1)(x(t+1))|F (t+1)

]
− 1

t

t∑
τ=1

l(τ)(x(t+1)), (38)

where the second equality comes from the observation that
l(τ)(x(t+1)) is deterministic as long as F (t+1) is given. This
together with (37) indicates that

E
[
L(t+1)(x(t+2))− L(t)(x(t+1))|F (t+1)

]
≤ E

[
f (t+1)(x(t+1))− f (t)(x(t+1))|F (t+1)

]
≤ 1

t+ 1

(
E
[
l(t+1)(x(t+1))|F (t+1)

]
− 1

t

t∑
τ=1

l(τ)(x(t+1))

)

≤ 1

t+ 1

∣∣∣∣∣E [l(t+1)(x(t+1))|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x(t+1))

∣∣∣∣∣ ,
and [

E
[
L(t+1)(x(t+2))− L(t)(x(t+1))|F (t+1)

]]
0

≤ 1

t+ 1

∣∣∣∣∣E [l(t+1)(x(t+1))|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x(t+1))

∣∣∣∣∣
≤ 1

t+ 1
sup
x∈X

∣∣∣∣∣E [l(t+1)(x)|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x)

∣∣∣∣∣ , (39)

where [x]0 = max(x, 0), and X in (39) with X ,
{x(1),x(2), . . . , } is the complete path of x.
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Now we derive an upper bound on the expected value of
the right hand side of (39):

E

[
sup
x∈X

∣∣∣∣∣E [l(t+1)(x)|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x)

∣∣∣∣∣
]

= E
[
sup
x∈X

∣∣y̆(t) − (r
(t)
2 )Tx+ xTR

(t)
3 x

∣∣]
≤ E

[
sup
x∈X

∣∣y̆(t)∣∣+ sup
x∈X

∣∣(b̆(t))Tx
∣∣+ sup

x∈X

∣∣xT Ğ(t)x
∣∣]

= E
[
sup
x∈X

∣∣y̆(t)∣∣]+ E
[
sup
x∈X

∣∣(b̆(t))Tx
∣∣]+ E

[
sup
x∈X

∣∣xT Ğ(t)x
∣∣] ,

(40)

where

y̆(t) , 1

t

t∑
τ=1

N∑
n=1

(
Eyn

[
y2n
]
− (y(τ)n )2

)
,

b̆(t) , 1

t

t∑
τ=1

N∑
n=1

2
(
E{yn,gn} [yngn]− y(τ)n g(τ)

n

)
,

Ğ(t) , 1

t

t∑
τ=1

N∑
n=1

(
Egn [gngn]− g(t)

n g(τ)T
n

)
.

Then we bound each term in (40) individually. For the first
term, since y̆(t) is independent of x(t),

E
[
sup
x∈X

∣∣y̆(t)∣∣] = E
[∣∣y̆(t)∣∣] = E

[√
(y̆(t))2

]
≤
√
E
[
(y̆(t))2

]
≤
√

σ2
1

t
(41)

for some σ1 < ∞, where the second equality comes from
Jensen’s inequality. Because of Assumptions (A1), (A2) and
(A4), y̆(t) has bounded moments and the existence of σ1 is
then justified by the central limit theorem [35].

For the second term of (40), we have

E
[
sup
x

∣∣(b̆(t))Tx
∣∣]≤E

[
sup
x
(
∣∣b̆(t)

∣∣)T |x|
]
≤
(
E
[∣∣b̆(t)

∣∣])T |x̄| .
Similar to the line of analysis of (41), there exists a σ2 < ∞
such that

E
[
sup
x

∣∣(b̆(t))Tx
∣∣] ≤ (E [∣∣b̆(t)

∣∣])T |x̄| ≤
√

σ2
2

t
. (42)

For the third term of (40), we have

E
[
sup
x∈X

∣∣xT Ğ(t)x
∣∣]

= E
[

max
1≤k≤K

∣∣λk(Ğ
(t))
∣∣ · ∥x̄∥22]

= ∥x̄∥22 · E
[√

max{λ2
max(Ğ

(t)), λ2
min(Ğ

(t))}
]

≤ ∥x̄∥22 ·
√
E
[
max{λ2

max(Ğ
(t)), λ2

min(Ğ
(t))}

]
≤ ∥x̄∥22 ·

√√√√E

[
K∑

k=1

λ2
k(Ğ

(t))

]

= ∥x̄∥22 ·
√
E
[
tr
(
Ğ(t)(Ğ(t))T

)]
≤
√

σ2
3

t
(43)

for some σ3 < ∞, where the first equality comes from the
observation that x should align with the eigenvector associated
with the eigenvalue with largest absolute value. Then combing
(41)-(43), we can claim that there exists σ ,

√
σ2
1 +

√
σ2
2 +√

σ2
3 > 0 such that

E

[
sup
x∈X

∣∣∣∣∣E [l(t+1)(x)|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x)

∣∣∣∣∣
]
≤ σ√

t
.

In view of (39), we have

E
[[
E
[
L(t+1)(x(t+2))− L(t)(x(t+1))|F (t+1)

]]
0

]
≤ σ

t3/2
.

(44)
Summing (44) over t, we obtain
∞∑
t=1

E
[[
E
[
L(t+1)(x(t+2))− L(t)(x(t+1))|F (t+1)

]]
0

]
< ∞.

Then it follows from the quasi-martingale convergence the-
orem (cf. [30, Th. 6]) that

{
L(t)(x(t+1))

}
converges almost

surely.
Part 3) Combining (29) and (34), we have

L(t)(x(t+1))− L(t−1)(x(t)) ≤

−η
∥∥x̂(t) − x(t)

∥∥2
2
+L(t)(x(t))− L(t−1)(x(t)). (45)

Besides, it follows from the convergence of
{
L(t)(x(t+1))

}
t

lim
t→∞

L(t)(x(t+1))− L(t−1)(x(t)) = 0,

and the strong law of large numbers that

lim
t→∞

L(t)(x(t))− L(t−1)(x(t)) = 0.

Taking the limit inferior of both sides of (45), we have

0 = lim inf
t→∞

{
L(t)(x(t+1))− L(t−1)(x(t))

}
≤ lim inf

t→∞

{
−η
∥∥x̂(t) − x(t)

∥∥2
2
+ L(t)(x(t))− L(t−1)(x(t))

}
≤ lim inf

t→∞

{
−η
∥∥x̂(t) − x(t)

∥∥2
2

}
+ lim sup

t→∞

{
L(t)(x(t))− L(t−1)(x(t))

}
= −η · lim sup

t→∞

∥∥x̂(t) − x(t)
∥∥2
2
≤ 0,

so we can infer that lim supt→∞
∥∥x̂(t) − x(t)

∥∥
2
= 0. Since

0 ≤ lim inft→∞
∥∥x̂(t)−x(t)

∥∥
2
≤ lim supt→∞

∥∥x̂(t)−x(t)
∥∥
2
=

0, we can infer that lim inft→∞
∥∥x̂(t) − x(t)

∥∥ = 0 and thus
limt→∞

∥∥x̂(t) − x(t)
∥∥ = 0.

Consider any limit point of the sequence
{
x(t)

}
t
, denoted

as x(∞). Since x̂ is a continuous function of x in view of (8)
and limt→∞

∥∥x̂(t) − x(t)
∥∥
2
= 0, it must be limt→∞ x̂(t) =

x̂(∞) = x(∞), and the minimum principle in (28) can be
simplified as

(xk − x
(∞)
k )(∇kf

(∞)(x(∞)) + ξ
(∞)
k ) ≥ 0, ∀xk,

whose summation over k = 1, . . . ,K leads to

(x− x(∞))T (∇f (∞)(x(∞)) + ξ(∞)) ≥ 0, ∀x.
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Therefore x(∞) minimizes L(∞)(x) and x(∞) = x⋆ almost
surely by Lemma 1. Since x⋆ is unique in view of Assump-
tions (A1)-(A3), the whole sequence {x(t)} has a unique limit
point and it thus converges to x⋆. The proof is thus completed.
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