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A Novel Iterative Convex Approximation Method
Yang Yang and Marius Pesavento

Abstract—In this paper, we propose a novel iterative convex
approximation algorithm to efficiently compute stationary points
for a large class of possibly nonconvex optimization problems.
The stationary points are obtained by solving a sequence of
successively refined approximate problems, each of which is
much easier to solve than the original problem. To achieve
convergence, the approximate problem only needs to exhibit a
weak form of convexity, namely, pseudo-convexity. We show that
the proposed framework not only includes as special cases a
number of existing methods, for example, the gradient method
and the Jacobi algorithm, but also leads to new algorithms which
enjoy easier implementation and faster convergence speed. We
also propose a novel line search method for nondifferentiable
optimization problems, which is carried out over a properly
constructed differentiable function with the benefit of a simpli-
fied implementation as compared to state-of-the-art line search
techniques that directly operate on the original nondifferentiable
objective function. The advantages of the proposed algorithm
are shown, both theoretically and numerically, by several ex-
ample applications, namely, MIMO broadcast channel capacity
computation and LASSO in sparse signal recovery.

Index Terms—Exact Line Search, LASSO, MIMO Broadcast
Channel, Nonconvex Optimization, Nondifferentiable Optimiza-
tion, Successive Convex Approximation.

I. INTRODUCTION

In this paper, we propose an iterative algorithm to solve the
following general optimization problem:

minimize
x

f(x)

subject to x ∈ X ,
(1)

where X ⊆ Rn is a closed and convex set, and f(x) : Rn →
R is a proper and differentiable function with a continuous
gradient. We assume that problem (1) has a solution.

Problem (1) also includes some class of nondifferentiable
optimization problems, if the nondifferentiable function g(x)
is convex:

minimize
x

f(x) + g(x)

subject to x ∈ X ,
(2)

because problem (2) can be rewritten into a problem with the
form of (1) by the help of auxiliary variables:

minimize
x,y

f(x) + y

subject to x ∈ X , g(x) ≤ y.
(3)

We do not assume that f(x) is convex, so (1) is in general a
nonconvex optimization problem. The focus of this paper is on
the development of efficient iterative algorithms for computing
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the stationary points of problem (1). The optimization problem
(1) represents general class of optimization problems with a
vast number of diverse applications. Consider for example
the sum-rate maximization in the MIMO multiple access
channel (MAC) [1], the broadcast channel (BC) [2, 3] and the
interference channel (IC) [4, 5, 6, 7, 8, 9], where f(x) is the
sum-rate function of multiple users (to be maximized) while
the set X characterizes the users’ power constraints. In the
context of the MIMO IC, (1) is a nonconvex problem and NP-
hard [5]. As another example, consider portfolio optimization
in which f(x) represents the expected return of the portfolio
(to be maximized) and the set X characterizes the trading
constraints [10]. Furthermore, in sparse (l1-regularized) linear
regression, f(x) denotes the least square function and g(x) is
the sparsity regularization function [11, 12].

Commonly used iterative algorithms belong to the class of
descent direction methods such as the conditional gradient
method and the gradient projection method [13], which often
suffer from slow convergence. To speed up the convergence,
the block coordinate descent (BCD) method that uses the
notion of the nonlinear best-response has been widely studied
[13, Sec. 2.7]. In particular, this method is applicable if
the constraint set of (1) has a Cartesian product structure
X = X1 × . . .×XK such that

minimize
x=(xk)Kk=1

f(x1, . . . ,xK)

subject to xk ∈ Xk, k = 1, . . . ,K.
(4)

The BCD method is an iterative algorithm: in each iteration,
only one variable is updated by its best-response xt+1

k =
arg minxk∈Xk

f(xt+1
1 , . . . ,xt+1

k−1,xk,x
t
k+1, . . . ,x

t
K) (i.e., the

point that minimizes f(x) with respect to (w.r.t.) the variable
xk only while the remaining variables are fixed to their values
of the preceding iteration) and the variables are updated se-
quentially. This method and its variants have been successfully
adopted to many practical problems [1, 6, 7, 10, 14].

When the number of variables is large, the convergence
speed of the BCD method may be slow due to the sequential
nature of the update. A parallel variable update based on the
best-response seems attractive as a mean to speed up the
updating procedure, however, the convergence of a parallel
best-response algorithm is only guaranteed under rather re-
strictive conditions, c.f. the diagonal dominance condition on
the objective function f(x1, . . . ,xK) [15], which is not only
difficult to satisfy but also hard to verify. If f(x1, . . . ,xK)
is convex, the parallel algorithms converge if the stepsize
is inversely proportional to the number of block variables
K. This choice of stepsize, however, tends to be overly
conservative in systems with a large number of block variables
and inevitably slows down the convergence [2, 10, 16].

A recent progress in parallel algorithms has been made in
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[8, 9, 17, 18], in which it was shown that the stationary point
of (1) can be found by solving a sequence of successively
refined approximate problems of the original problem (1), and
convergence to a stationary point is established if, among other
conditions, the approximate function (the objective function
of the approximate problem) and stepsizes are properly se-
lected. The parallel algorithms proposed in [8, 9, 17, 18] are
essentially descent direction methods. A description on how
to construct the approximate problem such that the convexity
of the original problem is preserved as much as possible is
also contained in [8, 9, 17, 18] to achieve faster convergence
than standard descent directions methods such as classical
conditional gradient method and gradient projection method.

Despite its novelty, the parallel algorithms proposed in
[8, 9, 17, 18] suffer from two limitations. Firstly, the approx-
imate function must be strongly convex, and this is usually
guaranteed by artificially adding a quadratic regularization
term to the original objective function f(x), which how-
ever may destroy the desirable characteristic structure of the
original problem that could otherwise be exploited, e.g., to
obtain computationally efficient closed-form solutions of the
approximate problems [6]. Secondly, the algorithms require
the use of a decreasing stepsize. On the one hand, a slowly
decaying stepsize is preferable to make notable progress and
to achieve satisfactory convergence speed; on the other hand,
theoretical convergence is guaranteed only when the stepsize
decays fast enough. In practice, it is a difficult task on its own
to find a decay rate for the stepsize that provides a good trade-
off between convergence speed and convergence guarantee,
and current practices mainly rely on heuristics [17].

The contribution of this paper consists of the development
of a novel iterative convex approximation method to solve
problem (1). In particular, the advantages of the proposed
iterative algorithm are the following:

1) The approximate function of the original problem (1) in
each iteration only needs to exhibit a weak form of convexity,
namely, pseudo-convexity. The proposed iterative method not
only includes as special cases many existing methods, for
example, [4, 6, 8, 9, 14, 17], but also opens new possibili-
ties for constructing approximate problems that are easier to
solve. For example, in the MIMO BC sum-rate maximization
problems (Sec. IV-A), the new approximate problems can be
solved in closed-form. We also show by a counterexample that
the assumption on pseudo-convexity is tight in the sense that
if it is not satisfied, the algorithm may not converge.

2) The stepsizes can be determined based on the problem
structure, typically resulting in faster convergence than in cases
where constant stepsizes [2, 10, 16] and decreasing stepsizes
[8, 17] are used. For example, a constant stepsize can be used
when f(x) is given as the difference of two convex functions
as in DC programming [19]. When the objective function
is nondifferentiable, we propose a new exact/successive line
search method that is carried out over a properly constructed
differentiable function. Thus it is much easier to implement
than state-of-the-art techniques that operate on the original
nondifferentiable objective function directly.

In the proposed algorithm, the exact/successive line search
is used to determine the stepsize and it can be implemented in

a centralized controller, whose existence presence is justified
for particular applications, e.g., the base station in the MIMO
BC, and the portfolio manager in multi-portfolio optimization
[10]. We remark that also in applications in which centralized
controller are not admitted, however, the line search procedure
does not necessarily imply an increased signaling burden when
it is implemented in a distributed manner among different
distributed processors. For example, in the LASSO problem
studied in Sec. IV-B and Sec. IV-C, the stepsize based on
the exact line search can be computed in closed-form and it
does not incur any additional signaling as in predetermined
stepsizes, e.g., decreasing stepsizes and constant stepsizes.
Besides, even in cases where the line search procedure induces
additional signaling, the burden is often fully amortized by the
significant increase in the convergence rate.

The rest of the paper is organized as follows. In Sec.
II we introduce the mathematical background. The novel
iterative method is proposed and its convergence is analyzed
in Sec. III; its connection to several existing descent direction
algorithms is presented there. In Sec. IV, several applications
are considered: sum rate maximization problem of MIMO BC
to illustrate the advantage of the proposed approximate func-
tion, and LASSO to illustrate the advantage of the proposed
stepsize. The paper is finally concluded in Sec. V.

Notation: We use x, x and X to denote scalar, vector and
matrix, respectively. We use Xjk to denote the (j, k)-th ele-
ment of X; xk is the k-th element of x, and x = (xk)Kk=1. We
denote x−1 as the element-wise inverse of x, i.e., (x−1)k =
1/xk. Notation x◦y and X⊗Y denotes the Hadamard product
between x and y, and the Kronecker product between X and
Y, respectively. The operator [x]ba returns the element-wise
projection of x onto [a,b]: [x]ba , max(min(x,b),a), and
[x]

+ , [x]0. We denote dxe as the smallest integer that is
larger than or equal to x. We denote d(X) as the vector
that consists of the diagonal elements of X and diag(x) is
a diagonal matrix whose diagonal elements are as same as x.
We use 1 to denote the vector whose elements are equal to 1.

II. PRELIMINARIES ON DESCENT DIRECTION METHOD
AND CONVEX FUNCTIONS

In this section, we introduce the basic definitions and
concepts that are fundamental in the development of the
mathematical formalism used in the rest of the paper.

Stationary point. A point y is a stationary point of (1) if

(x− y)T∇f(y) ≥ 0, ∀x ∈ X . (5)

Condition (5) is the necessary condition for local (and also
global) optimality of the variable y. For nonconvex problems,
where global optimality conditions are difficult to establish, the
computation of stationary points of the optimization problem
(1) is generally desired. If (1) is convex, stationary points
coincide with (globally) optimal points and condition (5) is
also sufficient for y to be (globally) optimal.

Descent direction. The vector dt is a descent direction of
the function f(x) at x = xt if

∇f(xt)Tdt < 0. (6)
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If (6) is satisfied, the function f(x) can be decreased when x
is updated from xt along direction dt. This is because in the
Taylor expansion of f(x) around x = xt is given by:

f(xt + γdt) = f(xt) + γ∇f(xt)Tdt + o(γ),

where the first order term is negative in view of (6). For
sufficiently small γ, the first order term dominates all higher
order terms. More rigorously, if dt is a descent direction, there
exists a γ̄t > 0 such that [20, 8.2.1]

f(xt + γdt) < f(xt),∀γ ∈ (0, γ̄t).

Note that the converse is not necessarily true, i.e., f(xt+1) <
f(xt) does not necessarily imply that xt+1 − xt is a descent
direction of f(x) at x = xt.

Quasi-convex function. A function h(x) is quasi-convex if
for any α ∈ [0, 1]:

h((1− α)x + αy) ≤ max(h(x), h(y)), ∀x,y ∈ X .

A locally optimal point y of a quasi-convex function h(x)
over a convex set X is also globally optimal, i.e.,

h(x) ≥ h(y),∀x ∈ X .

Pseudo-convex function. A function h(x) is pseudo-convex
if [21]

∇h(x)T (y − x) ≥ 0 =⇒ h(y) ≥ h(x), ∀x,y ∈ X .

Another equivalent definition of pseudo-convex functions is
also useful in our context [21]:

h(y) < h(x) =⇒ ∇h(x)T (y − x) < 0. (7)

In other words, h(y) < h(x) implies that y − x is a descent
direction of h(x). A pseudo-convex function is also quasi-
convex [21, Th. 9.3.5], and thus any locally optimal points of
pseudo-convex functions are also globally optimal.

Convex function. A function h(x) is convex if

h(y) ≥ h(x) +∇h(x)T (y − x), ∀x,y ∈ X .

It is strictly convex if the above inequality is satisfied with
strict inequality whenever x 6= y. It is easy to see that a convex
function is pseudo-convex.

Strongly convex functions. A function h(x) is strongly
convex with constant a if

h(y) ≥ h(x) +∇h(x)T (y − x) + a
2 ‖x− y‖22 , ∀x,y ∈ X ,

for some positive constant a. The relationship of functions
with different degree of convexity is summarized in Fig. 1.

III. THE PROPOSED ITERATIVE CONVEX APPROXIMATION
METHOD

In this section, we propose an iterative algorithm that
solves (1) as a sequence of successively refined approximate
problems, each of which is much easier to solve than the
original problem (1), e.g., the approximate problem can be
decomposed into independent subproblems that even exhibits
a closed-form solution.

Figure 1. Relationship of functions with different degree of convexity

In iteration t, let f̃(x;xt) be the approximate function of
f(x) around the point xt. Then the approximate problem is

minimize
x

f̃(x;xt)

subject to x ∈ X ,
(8)

and its optimal point and solution set is denoted as Bxt and
S(xt), respectively:

Bxt ∈ S(xt) ,
{
x? ∈ X : f̃(x?;xt) = min

x∈X
f̃(x;xt)

}
. (9)

We assume that the approximate function f̃(x;y) satisfies the
following technical conditions:
(A1) The approximate function f̃(x;y) is pseudo-convex in
x for any given y ∈ X ;
(A2) The approximate function f̃(x;y) is continuously differ-
entiable in x for any given y ∈ X and continuous in y for
any x ∈ X ;
(A3) The gradient of f̃(x;y) and the gradient of f(x) are
identical at x = y for any y ∈ X , i.e., ∇xf̃(y;y) = ∇xf(y);

Based on (9), we define the mapping Bx that is used to
generate the sequence of points in the proposed algorithm:

X 3 x 7−→ Bx ∈ X . (10)

Given the mapping Bx, the following properties hold.

Proposition 1 (Stationary point and descent direction). (i) A
point y is a stationary point of (1) if and only if y ∈ S(y)
defined in (9); (ii) If y is not a stationary point of (1), then
By − y is a descent direction of f(x):

∇f(y)T (By − y) < 0. (11)

Proof: See Appendix A.
If xt is not a stationary point, according to Proposition 1,

we define the vector update xt+1 in the (t+1)-th iteration as:

xt+1 = xt + γt(Bxt − xt), (12)

where γt ∈ (0, 1] is an appropriate stepsize that can be
determined by either the exact line search (also known as the
minimization rule) or the successive line search (also known
as the Armijo rule). Since xt ∈ X , Bxt ∈ X and γt ∈ (0, 1],
it follows from the convexity of X that xt+1 ∈ X for all t.

Exact line search. The stepsize is selected such that the
function f(x) is decreased to the largest extent along the
descent direction Bxt − xt:

γt ∈ arg min
0≤γ≤1

f(xt + γ(Bxt − xt)). (13)
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Algorithm 1 The iterative convex approximation algorithm for
differentiable problem (1)
Data: t = 0 and x0 ∈ X .
Repeat the following steps until convergence:
S1: Compute Bxt using (9).
S2: Compute γt by the exact line search (13) or the succes-

sive line search (14).
S3: Update xt+1 according to (12) and set t← t+ 1.

With this stepsize rule, it is easy to see that if xt is not a
stationary point, then f(xt+1) < f(xt).

In the special case that f(x) in (1) is convex and γ? nulls
the gradient of f(xt+γ(Bxt−xt)), i.e., ∇γf(xt+γ?(Bxt−
xt)) = 0, then γt in (13) is simply the projection of γ? onto
the interval [0, 1]:

γt = [γ?]
1
0 =


1, if ∇γf(xt + γ(Bxt − xt))|γ=1 ≥ 0,

0, if ∇γf(xt + γ(Bxt − xt))|γ=0 ≤ 0,

γ?, otherwise.

If 0 ≤ γt = γ? ≤ 1, the constrained optimization problem
in (13) is essentially unconstrained. In some applications it is
possible to compute γ? analytically, e.g., if f(x) is quadratic as
in the LASSO problem (Sec. IV-B and Sec. IV-C). Otherwise,
for general convex functions, γ? can be found efficiently by the
bisection method as follows. Restricting the function f(x) to a
line xt+γ(Bxt−xt), the new function f(xt+γ(Bxt−xt)) is
convex in γ [22]. It thus follows that∇γf(xt+γ(Bxt−xt)) <
0 if γ < γ? and ∇γf(xt+γ(Bxt−xt)) > 0 if γ > γ?. Given
an interval [γlow, γup] containing γ? (the initial value of γlow
and γup is 0 and 1, respectively), set γmid = (γlow + γup)/2
and refine γlow and γup according to the following rule:{

γlow = γmid, if ∇γf(xt + γmid(Bxt − xt)) > 0,

γup = γmid, if ∇γf(xt + γmid(Bxt − xt)) < 0.

The procedure is repeated for finite times until the gap γup −
γlow is smaller than a prescribed precision.

Successive line search. If no structure in f(x) (e.g., con-
vexity) can be exploited to efficiently compute γt according
to the exact line search (13), the successive line search can
instead be employed: given scalars 0 < α < 1 and 0 < β < 1,
the stepsize γt is set to be γt = βmt , where mt is the smallest
nonnegative integer m satisfying the following inequality:

f(xt + βm(Bxt − xt)) ≤ f(xt) + αβm∇f(xt)T (Bxt − xt).
(14)

Note that the existence of a finite mt satisfying (14) is
always guaranteed if ∇f(xt)T (Bxt − xt) < 0 [13], i.e., from
Proposition 1 inequality (14) always admits a solution.

The algorithm is formally summarized in Algorithm 1 and
its convergence properties are given in the following theorem.

Theorem 2 (Convergence to a stationary point). Consider
the sequence {xt} generated by Algorithm 1. Provided that
Assumptions (A1)-(A3) as well as the following assumptions
are satisfied:
(A4) The solution set S(xt) is nonempty for t = 1, 2, . . .;

(A5) Given any convergent subsequence {xt}t∈T where T ⊆
{1, 2, . . .}, the sequence {Bxt}t∈T is bounded.

Then any limit point of {xt} is a stationary point of (1).

Proof: See Appendix B.
In the following we discuss some properties of the proposed

Algorithm 1.
On the conditions (A1)-(A5). The only requirement on

the convexity of the approximate function f̃(x;xt) is that
it is pseudo-convex, cf. (A1). To the best of our knowl-
edge, these are the weakest conditions for descent direction
methods available in the literature. As a result, it enables
the construction of new approximate functions that can often
be optimized more easily or even in closed-form, resulting
in a significant reduction of the computational cost if the
approximate problems must otherwise only be optimized by
iterative algorithms as in standard solvers [23]. Assumptions
(A2)-(A3) represent standard conditions for successive convex
approximation techniques and are satisfied for many existing
approximation functions, cf. Sec. III-B. Sufficient conditions
for Assumptions (A4)-(A5) are that either the feasible set X in
(8) is bounded or the approximate function in (8) is strongly
convex [24]. We show that how these assumptions are satisfied
in popular applications considered in Sec. IV.

On the pseudo-convexity of the approximate function.
Assumption (A1) is tight in the sense that if it is not satisfied,
Proposition 1 may not hold. Consider the following simple
example: f(x) = x3, where −1 ≤ x ≤ 1 and the point
xt = 0 at iteration t. Choosing the approximate function
f̃(x;xt) = x3, which is quasi-convex but not pseudo-convex,
all assumptions except (A1) are satisfied. It is easy to see that
Bxt = −1, however (Bxt − xt)∇f(xt) = (−1 − 0) · 0 = 0,
and thus Bxt − xt is not a descent direction, i.e., inequality
(11) in Proposition 1 is violated.

On the stepsize. The stepsize can be determined in a more
straightforward way if f̃(x;xt) is a global upper bound of
f(x) that is exact at x = xt, i.e., assume that
(A6) f̃(x;xt) ≥ f(x) and f̃(xt;xt) = f(xt),
then Algorithm 1 converges under the choice γt = 1 which
results in the update xt+1 = Bxt. To see this, we first remark
that γt = 1 must be an optimal point of the following problem:

1 ∈ argmin
0≤γ≤1

f̃(xt + γ(Bxt − xt);xt), (15)

otherwise the optimality of Bxt is contradicted, cf. (9).
At the same time, it follows from Proposition 1 that
∇f̃(xt;xt)T (Bxt − xt) < 0. The successive line search over
f̃(xt+γ(Bxt−xt)) thus yields a nonnegative and finite integer
mt such that for some 0 < α < 1 and 0 < β < 1:

f̃(Bxt;xt) ≤ f̃(xt + βmt(Bxt − xt);xt)

≤ f̃(xt) + αβmt∇f̃(xt;xt)T (Bxt − xt)

= f(xt) + αβmt∇f(xt)T (Bxt − xt), (16)

where the last equality follows from Assumptions (A3) and
(A6). Invoking Assumption (A6) again, we obtain

f(xt+1) ≤ f(xt) + αβmt∇f(xt)T (Bxt − xt)
∣∣
xt+1=Bxt .

(17)
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The proof of Theorem 2 can be used verbatim to prove the
convergence of Algorithm 1 with a constant stepsize γt = 1.

A. Nondifferentiable optimization problems

In the following we show that the proposed Algorithm 1
can also be applied to solve problem (3), and its equivalent
formulation (2) which contains a nondifferentiable objective
function. Suppose that f̃(x;xt) is an approximate function of
f(x) in (3) around xt and it satisfies Assumptions (A1)-(A3).
Then the approximation of problem (3) around xt is

minimize
x,y

f̃(x;xt) + y

subject to x ∈ X , g(x) ≤ y.
(18)

To see this, it is sufficient to verify Assumption (A3) only:

∇x(f̃(xt;xt) + yt) = ∇x(f(xt) + yt),

∇y(f̃(xt;xt) + yt) = ∇y(f(xt) + yt) = 1.

We denote its optimal points x and y of (18) as Bxt and
y?(xt), respectively. Then it is easy to infer from (18) that
y?(xt) = g(Bxt). Based on the exact line search, the stepsize
γt in this case is given as

γt ∈ argmin
0≤γ≤1

{
f(xt+γ(Bxt−xt))+yt+γ(y?(xt)−yt))

}
. (19)

Then the variables xt+1 and yt+1 are defined as follows:

xt+1 = xt + γt(Bxt − xt), (20a)

yt+1 = yt + γt(y?(xt)− yt). (20b)

The convergence of Algorithm 1 with (Bxt, y?(xt)) and γt

given by (18)-(19) directly follows from Theorem 2.
The point yt+1 given in (20b) can be further refined. Note

that Bxt is independent of yt and

f(xt+1) + yt+1 = f(xt+1) + yt + γt(y?(xt)− yt)
≥ f(xt+1) + g(xt) + γt(g(Bxt)− g(xt))

≥ f(xt+1) + g((1− γt)xt + γtBxt)
= f(xt+1) + g(xt+1),

where the first and the second inequality comes from the fact
that yt ≥ g(xt) and Jensen’s inequality of convex functions
g(x) [22], respectively. Since yt+1 ≥ g(xt+1) by definition,
the point (xt+1, g(xt+1)) always yields a lower value of
f(x) + y than (xt+1, yt+1) while (xt+1, g(xt+1)) is still
a feasible point for problem (3). The update (20b) is then
replaced by the following enhanced rule:

yt+1 = g(xt+1). (21)

Algorithm 1 with Bxt given in (20a) and yt+1 given in (21)
still converges to a stationary point of (3).

Based on (21), the notations in (18)-(19) can be simplified
by removing the auxiliary variable y: (18) and (19) is respec-
tively equivalent to

Bxt = arg min
x∈X

{
f̃(x;xt) + g(x)

}
(22)

and

γt ∈ argmin
0≤γ≤1

{
f(xt+γ(Bxt−xt))+γ(g(Bxt)−g(xt))

}
. (23)

Algorithm 2 The iterative convex approximation algorithm for
nondifferentiable problem (2)
Data: t = 0 and x0 ∈ X .
Repeat the following steps until convergence:
S1: Compute Bxt using (22).
S2: Compute γt by the exact line search (23) or the succes-

sive line search (24).
S3: Update xt+1 according to

xt+1 = xt + γt(Bxt − xt).

Set t← t+ 1.

In the context of the successive line search, customizing
the general definition (14) for problem (2) yields the choice
γt = βmt with mt being the smallest integer that satisfies the
inequality:

f(xt + βm(Bxt − xt))− f(xt) ≤
βm
(
α∇f(xt)T (Bxt − xt)+(α− 1)(g(Bxt)− g(xt))

)
.

(24)

Based on the derivations above, the proposed algorithm for
the nondifferentiable problem (2) is formally summarized in
Algorithm 2.

It is much easier to calculate γt according to (23) than in
state-of-the-art techniques that directly carry out the exact line
search over the original nondifferentiable objective function in
(2) [25, Rule E], i.e., min0≤γ≤1 f(xt+γ(Bxt−xt))+g(xt+
γ(Bxt−xt)). This is because the objective function in (23) is
differentiable in γ while state-of-the-art techniques involve the
minimization of a nondifferentiable function. If f(x) exhibits
a specific structure such as in quadratic functions, γt can even
be calculated in closed-form. This property will be exploited
to develop fast and easily implementable algorithm for the
popular LASSO problem in Sec. IV-B and Sec. IV-C.

In the proposed successive line search, the left hand side of
(24) depends on f(x) while the right hand side is linear in
βm. The proposed variation of the successive line search thus
involves only the evaluation of the differentiable function f(x)
and it outperforms, from the perspective of both computational
complexity and signaling exchange when implemented in a
distributed manner, state-of-the-art techniques (for example
[25, Rule A’], [17, Remark 4] and [26, Algorithm 2.1]) in
which the whole nondifferentiable function f(x) + g(x) must
be repeatedly evaluated (for different m) and compared with
a certain benchmark before mt is found.

B. Special Cases of the Proposed Method

In this subsection, we interpret some existing methods in the
context of Algorithm 1 and show that they can be considered
as special cases of the proposed algorithm.

Conditional gradient method: In this method, the approxi-
mate function is given as the first-order approximation of f(x)
at x = xt [13, Sec. 2.2.2], i.e.,

f̃(x;xt) = ∇f(xt)T (x− xt). (25)
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Then the stepsize is selected by either the exact line search or
the successive line search.

Gradient projection method: In this method, Bxt is given
by [13, Sec. 2.3]

Bxt =
[
xt − st∇f(xt)

]
X ,

where st > 0 and [x]X denotes the projection of x onto X .
This is equivalent to defining f̃(x;xt) in (9) as follows:

f̃(x;xt) = ∇f(xt)T (x− xt) + 1
2sk

∥∥x− xt
∥∥2
2
,

which is the first-order approximation of f(x) augmented by
a quadratic regularization term that is introduced to improve
the numerical stability [15]. Then the stepsize is selected by
either the exact or the successive line search.

Jacobi algorithm: If f(x) is convex in each xk where k =
1, . . . ,K (but not necessarily jointly convex in (x1, . . . ,xK)),
the approximate function is defined as [8]

f̃(x;xt) =
∑K
k=1

(
f(xk,x

t
−k) + τk

2

∥∥xk − xtk
∥∥2
2

)
, (26)

where τk ≥ 0 for k = 1, . . . ,K. The k-th component function
f(xk,x

t
−k) + τk

2 ‖xk − xtk‖
2

2 in (26) is obtained from the
original function f(x) by fixing all variables except xk, i.e.,
x−k = xt−k, and further adding an (optional) quadratic regu-
larization term. Since f̃(x;xt) in (26) is convex, Assumption
(A1) is satisfied. Based on the observations that

∇xk
f̃(xt;xt) = ∇xk

(f(xk,x
t
−k) + τk

2

∥∥xk − xtk
∥∥2
2
)
∣∣
xk=xt

k

= ∇xk
f(xk,x

t
−k) + τk(xk − xtk)

∣∣
xk=xt

k

= ∇xk
f(xt),

we conclude that Assumption (A3) is satisfied by the choice of
the approximate function in (26). The resulting approximate
problem is given by

minimize
x=(xk)Kk=1

∑K
k=1f(xk,x

t
−k)

subject to x ∈ X ,
(27)

while the stepsizes are then determined by line search.
To guarantee the convergence, the condition proposed in [9]

is that τk > 0 for all k in (26). However, this may destroy
the convenient structure that could otherwise be exploited.
In contrast to this, in the case τk = 0, problem (27) may
exhibit a closed-form solution. In the proposed method, the
convergence is guaranteed even when τk = 0 in (26) since
f̃(x;xt) in (26) is convex when τk = 0 for all k and it
naturally satisfies the pseudo-convexity assumption specified
by Assumption (A1). We will show by an example application
in the MIMO BC in Sec. IV-A that the proposed relaxation in
approximate function yields new approximate problems that
are much easier to solve.

The structure inside the constraint set X , if any, may be
exploited to solve (27) even more efficiently. For example, the
constraint set X consists of separable constraints in the form of∑K
k=1 hk(xk) ≤ 0 for some convex functions hk(xk). Since

subproblem (27) is convex, primal and dual decomposition
techniques can readily be used to solve (27) efficiently [27]
(such an example is studied in Sec. IV-A).

Algorithm 3 The Jacobi algorithm for problem (4)
Data: t = 0 and x0

k ∈ Xk for all k = 1, . . . ,K.
Repeat the following steps until convergence:
S1: For k = 1, . . . ,K, compute Bkxt using (28).
S2: Compute γt by the exact line search (13) or the succes-

sive line search (14).
S3: Update xt+1 according to

xt+1
k = xtk + γt(Bkxt − xtk),∀k = 1, . . . ,K.

Set t← t+ 1.

In the case that the constraint set X has a Cartesian product
structure (4), the subproblem (27) is naturally decomposed into
K sub-problems, one for each variable, which are then solved
in parallel. This is commonly known as the Jacobi update:
Bxt = (Bkxt)Kk=1 and

Bkxt ∈ arg min
xk∈Xk

f(xk,x
t
−k), k = 1, . . . ,K, (28)

where Bkxt can be interpreted as variable xk’s best-response
to other variables x−k = (xj)j 6=k when x−k = xt−k. The
Jacobi algorithm is formally summarized in Algorithm 3.

If f(x) is only pseudo-convex (but not necessarily convex)
in each xk, the approximate function

∑K
k=1 f(xk,x

t
−k) is

not necessarily pseudo-convex in x, but Algorithm 3 stills
converges as we show in the following theorem.

Theorem 3. Consider the sequence {xt} generated by Algo-
rithm 3. Provided that f(x) is pseudo-convex in xk for all
k = 1, . . . ,K and Assumptions (A4)-(A5) are satisfied. Then
any limit point of the sequence generated by Algorithm 3 is a
stationary point of (4).

Proof: See Appendix C.
The convergence condition specified in Theorem 3 relaxes

those in [8, 17]: f(x) only needs to be pseudo-convex in each
xk and no regularization term is needed (i.e., τk = 0). To
the best of our knowledge, this is the weakest convergence
condition on Jacobi algorithms available in the literature.

DC algorithm: If the objective function in (1) is the
difference of two convex functions f1(x) and f2(x):

f(x) = f1(x)− f2(x),

the following approximate function can be used:

f̃(x;xt) = f1(x)− (f2(xt) +∇f2(xt)T (x− xt)).

Since f2(x) is convex and f2(x) ≥ f2(xt) +∇f2(xt)T (x −
xt), Assumption (A6) is satisfied and the a constant unit step-
size can be chosen. Such a choice outperforms the algorithm
proposed in [8] which uses decreasing stepsizes instead, i.e.,
it avoids the difficulty of finding a good decreasing rate and
generally yields faster convergence.

IV. EXAMPLE APPLICATIONS

In this section, we apply the proposed Algorithms 1-2
to solve important practical problems that are of broad and
fundamental interest to illustrate their advantages.
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A. MIMO Broadcast Channel Capacity Computation

In this subsection, we study the MIMO BC capacity com-
putation problem to illustrate the advantage of the proposed
approximate function.

Consider a MIMO BC where the channel matrix charac-
terizing the transmission from the base station to user k is
denoted by Hk, the transmit covariance matrix of the signal
from the base station to user k is denoted as Qk, and the
noise at each user k is an additive independent and identically
distributed Gaussian vector with unit variance on each of its
elements. Then the sum capacity of the MIMO BC is [28]

maximize
{Qk}

log
∣∣I +

∑K
k=1HkQkH

H
k

∣∣
subject to Qk � 0, k = 1, . . . ,K,

∑K
k=1tr(Qk) ≤ P, (29)

where P is the power budget at the base station.
Problem (29) is a convex problem whose solution cannot be

expressed in closed-form and can only be found iteratively. To
apply Algorithm 1, we invoke (26)-(27) and the approximate
problem at the t-th iteration is

maximize
{Qk}

∑K
k=1 log

∣∣Rk(Qt
−k) + HkQkH

H
k

∣∣
subject to Qk � 0, k = 1, . . . ,K,

∑K
k=1tr(Qk) ≤ P,

(30)

where Rk(Qt
−k) , I +

∑
j 6=kHjQ

t
jH

H
j . The approximate

function is concave in Q and differentiable in both Q and
Qt, and thus Assumptions (A1)-(A3) are satisfied. Since the
constraint set in (30) is compact, the approximate problem
(30) has a solution and Assumptions (A4)-(A5) are satisfied.

Problem (30) is convex and the sum-power constraint
coupling Q1, . . . ,QK is separable, so dual decomposition
techniques can be used [27]. In particular, the constraint set
has a nonempty interior, so strong duality holds and (30) can
be solved from the dual domain by relaxing the sum-power
constraint into the Lagrangian [22]:

BQt = arg max
(Qk�0)Kk=1

{∑K
k=1 log

∣∣Rk(Qt
−k) + HkQkH

H
k

∣∣
−λ?(

∑K
k=1tr(Qk)− P )

}
.

(31)
where BQt = (BkQt)Kk=1 and λ? is the optimal Lagrange
multiplier that satisfies the following conditions: λ? ≥ 0,∑K
k=1 tr(BkQt)− P ≤ 0, λ?(

∑K
k=1 tr(BkQt)− P ) = 0, and

can be found efficiently using the bisection method .
The problem in (31) is uncoupled among different variables

Qk in both the objective function and the constraint set, so it
can be decomposed into a set of smaller subproblems which
are solved in parallel: BQt = (BkQt)Kk=1 and

BkQt = arg max
Qk�0

{
log
∣∣Rk(Qt

−k) + HkQkH
H
k

∣∣−λ?tr(Qk)
}
,

(32)
and BkQt exhibits a closed-form expression based on the
waterfilling solution [2]. Thus problem (30) also has a closed-
form solution up to a Lagrange multiplier that can be found
efficiently using the bisection method. With the update direc-
tion BQt −Qt, the base station can implement the exact line
search to determine the stepsize using the bisection method
described after (13) in Sec. III.
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Figure 2. MIMO BC: sum-rate versus the number of iterations.

We remark that when the channel matrices Hk are rank
deficient, problem (30) is convex but not strongly convex, but
the proposed algorithm with the approximate problem (30) still
converges. However, if the approximate function in [8] is used,
an additional quadratic regularization term must be included
into (30) (and thus (32)) to make the approximate problem
strongly convex and to guarantee t, cf. (26), but the resulting
approximate problem no longer exhibits a closed-form solution
and thus are much more difficult to solve.

Simulations. The parameters are set as follows. The number
of users is K = 20 and K = 100, the number of transmit
and receive antenna is (5,4), and P = 10 dB. The simulation
results are averaged over 20 instances.

We apply Algorithm 1 with approximate problem (30) and
stepsize based on the exact line search, and compare it with the
iterative algorithm proposed in [2, 16], which uses the same
approximate problem (30) but with a fixed stepsize γt = 1/K
(K is the number of users). It is easy to see from Fig. 2
that the proposed method converges very fast (in less than
10 iterations) to the sum capacity, while the method of [2]
requires many more iterations. This is due to the benefit of
the exact line search applied in our algorithm over the fixed
stepsize tends to be overly conservative. Employing the exact
line search adds complexity as compared to the simple choice
of a fixed stepsize, however, since the objective function of
(29) is concave, the exact line search consists in maximizing
a differentiable concave function with a scalar variable, and
it can be solved efficiently by the bisection method with
affordable cost. More specifically, it takes 0.0023 seconds
to solve problem (30) and 0.0018 seconds to perform the
exact line search (the software/hardware environment is further
specified in Sec. IV-B). Therefore, the overall CPU time
(time per iteration×number of iterations) is still dramatically
decreased due to the notable reduction in the number of
iterations. Besides, in contrast to the method of [2], increasing
the number of users K does not slow down the convergence,
so the proposed algorithm is scalable in large networks.

We also compare the proposed algorithm with the iterative
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Figure 3. MIMO BC: error e(Qt) = <(tr(∇f(Qt)• (BQt−Qt))) versus
the number of iterations.

algorithm of [18], which uses the approximate problem (30)
but with an additional quadratic regularization term, cf. (26),
where τk = 10−5 for all k, and decreasing stepsizes γt+1 =
γt(1−dγt) where d = 0.01 is the so-called decreasing rate that
controls the rate of decrease in the stepsize. We can see from
Fig. 3 that the convergence behavior of [18] is rather sensitive
to the decreasing rate d. The choice d = 0.01 performs well
when the number of transmit and receive antennas is 5 and
4, respectively, but it is no longer a good choice when the
number of transmit and receive antenna increases to 10 and 8,
respectively. A good decreasing rate d is usually dependent on
the problem parameters and no general rule performs equally
well for all choices of parameters.

We remark once again that the complexity of each iteration
of the proposed algorithm is very low because of the exis-
tence of a closed-form solution to the approximate problem
(30), while the approximate problem proposed in [18] does
not exhibit a closed-form solution and can only be solved
iteratively. Specifically, it takes CVX (version 2.0 [29]) 21.1785
seconds (based on the dual approach (32) where λ? is found
by bisection). Therefore, the overall complexity per iteration
of the proposed algorithm is much lower than that of [18].

B. LASSO

In this subsection and the following subsection, we study
the LASSO problem to illustrate the advantage of the pro-
posed line search method for nondifferentiable optimization
problems.

LASSO is an important and widely studied problem in
sparse signal recovery [11, 12, 30, 31]:

minimize
x

1
2 ‖Ax− b‖22 + µ ‖x‖1 , (33)

where A ∈ RN×K (with N � K), b ∈ RK×1 and µ >
0 are given parameters. Problem (33) is an instance of the
general problem structure defined in (2) with the following
decomposition:

f(x) , 1
2 ‖Ax− b‖22 , and g(x) , µ ‖x‖1 . (34)

Problem (33) is convex, but its objective function is non-
differentiable and it does not have a closed-form solution. To
apply Algorithm 2, the scalar decomposition x = (xk)Kk=1 is
adopted. Recalling (22) and (26), the approximate problem is

Bxt = arg min
x

{∑K
k=1f(xk,x

t
−k) + g(x)

}
. (35)

Note that g(x) can be decomposed among different compo-
nents of x, i.e., g(x) =

∑K
k=1 g(xk), so the vector problem

(35) reduces to K independent scalar problem that can be
solved in parallel:

Bkxt = arg min
xk

{
f(xk,x

t
−k) + g(xk)

}
= dk(ATA)−1Sµ(rk(xt)), k = 1, . . . ,K,

where dk(ATA) is the k-th diagonal element of ATA,
Sa(b) , [b− a]

+ − [−b− a]
+ is the so-called soft-

thresholding operator [31] and

r(x) , d(ATA) ◦ x−AT (Ax− b), (36)

or more compactly:

Bxt = (Bkxt)Kk=1 = d(ATA)−1 ◦ Sµ1(r(xt)). (37)

Thus the update direction exhibits a closed-form expression.
The stepsize based on the proposed exact line search (23) is

γt = arg min
0≤γ≤1

{
f(xt + γ(Bxt − xt)) + γ

(
g(Bxt)− g(xt)

)}
= arg min

0≤γ≤1

{
1
2 ‖A(xt + γ(Bxt − xt))− b‖22

+ γ µ
(
‖Bxt‖1 − ‖xt‖1

) }

=

[
−

(Axt − b)TA(Bxt − xt) + µ(‖Bxt‖1 − ‖xt‖1)

(A(Bxt − xt))T (A(Bxt − xt))

]1
0

.

(38)

The exact line search consists in a convex quadratic optimiza-
tion problem with a scalar variable and a bound constraint,
so it exhibits a closed-form solution (38). Therefore, both the
update direction and stepsize can be calculated in closed-form.
We name the proposed update (37)-(38) as Soft-Thresholding
with Exact Line search Algorithm (STELA).

The proposed update (37)-(38) has several desirable features
that make it appealing in practice. Firstly, in each iteration,
all elements are updated in parallel based on the nonlinear
best-response (37). This is in the same spirit as [17] and the
convergence speed is generally faster than BCD [32] or the
gradient-based update [33]. Secondly, the proposed exact line
search (38) not only yields notable progress in each iteration
but also enjoys an easy implementation given the closed-form
expression. The convergence speed is thus further enhanced as
compared to the procedure proposed in [17] where decreasing
stepsizes are used.

Computational complexity. The computational overhead
associated with the proposed exact line search (38) can
significantly be reduced if (38) is carefully implemented as
outlined in the following. The most complex operation in (38)
is the matrix-vector multiplication, namely, Axt − b in the
numerator and A(Bxt − xt) in the denominator. On the one
hand, the term Axt−b is already available from r(xt), which
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Figure 4. Operation flow and signaling exchange between local processor
p and the central processor. A solid line indicates the computation that is
locally performed by the central/local processor, and a solid line with an
arrow indicates signaling exchange between the central and local processor
and the direction of the signaling exchange.

is computed in order to determine the best-response in (37). On
the other hand, the matrix-vector multiplication A(Bxt − xt)
is also required for the computation of Axt+1 − b as it can
alternatively be computed as:

Axt+1 − b = A(xt + γt(Bxt − xt))− b

= (Axt − b) + γtA(Bxt − xt), (39)

where only vector addition is involved. As a result, the stepsize
(38) does not incur any additional matrix-vector multiplica-
tions, but only affordable vector-vector multiplications.

Signaling exchange. When A is too large to be stored
and processed by a centralized processing unit, a parallel
architecture can be employed. Assume there are P+1 (P ≥ 2)
processors. We label the first P processors as local processors
and the last one as the central processor, and partition A as

A = [A1, A2, . . . ,AP ],

where Ap ∈ RN×Kp and
∑P
p=1Kp = K. Matrix Ap is stored

and processed in the local processor p, and the following
computations are decomposed among the local processors:

Ax =
∑P
p=1Apxp, (40a)

AT (Ax− b) =
(
AT
p (Ax− b)

)P
p=1

, (40b)

d(ATA) = (d(AT
pAp))

P
p=1. (40c)

where xp ∈ RKp . The central processor computes the best-
response Bxt in (37) and the stepsize γt in (38). The decom-
position in (40) enables us to analyze the signaling exchange
between local processor p and the central processor involved
in (37) and (38)1.

1Updates (37) and (38) can also be implemented by a parallel architecture
without a central processor. In this case, the signaling is exchanged mutually
between every two of the local processors, but the analysis is similar and the
conclusion to be drawn remains same: the proposed exact line search (38)
does not incur additional signaling compared with predetermined stepsizes.
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STELA: parallel update with simplified exact line search (proposed)
FLEXA: parallel update with decreasing stepsize (state−of−the−art)
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decreasing rate: 10−3
decreasing rate: 10−2

Figure 5. Convergence of STELA (proposed) and FLEXA (state-of-the-art)
for LASSO: error versus the number of iterations.

The signaling exchange is summarized in Fig. 4. Firstly,
the central processor sends Axt−b to each local processor p
(S1.1)2, and the local processor p first computes AT

p (Axt−b)
and then sends it back to the central processor (S1.2), which
forms AT (Axt−b) (S1.3) as in (40b) and calculates r(xt) as
in (36) (S1.4) and then Bxt as in (37) (S1.5). Then the central
processor sends Bxtp − xtp to each processor p (S2.1), and
each processor first computes Ap(Bxtp−xtp) and then sends it
back to the central processor (S2.2), which forms A(Bxt−xt)
(S2.3) as in (40a), calculates γt as in (38) (S2.4), and updates
xt+1 (S3.1) and Axt+1 − b (S3.2) according to (39). From
Fig. 4 we observe that the exact line search (38) does not incur
any additional signaling compared with that of predetermined
stepsizes (e.g., constant and decreasing stepsize), because the
signaling exchange in S2.1-S2.2 has also to be carried out in
the computation of Axt+1 − b in S3.2, cf. (39).

We finally remark that the proposed successive line search
can be applied and it exhibits a closed-form expression as well.
However, since the exact line search yields faster convergence,
we omit the details at this point.

Simulations. We first compare in Fig. 5 the proposed
algorithm STELA with FLEXA [17] in terms of the error
criterion e(xt) defined as:

e(xt) ,
∥∥∇f(xt)−

[
∇f(xt)− xt

]µ1
−µ1

∥∥
2
. (41)

Note that x? is a solution of (33) if and only if e(x?) = 0
[26]. FLEXA is implemented as outlined in [17]; however, the
selective update scheme [17] is not implemented in FLEXA
because it is also applicable for STELA and it cannot eliminate
the slow convergence and sensitivity of the decreasing stepsize.
We also remark that the stepsize rule for FLEXA is γt+1 =
γt(1−min(1, 10−4/e(xt))dγt) [17], where d is the decreasing
rate and γ0 = 0.9. The code and the data generating the figure
can be downloaded online [34].

Note that the error e(xt) plotted in Fig. 5 does not nec-
essarily decrease monotonically while the objective function
f(xt) + g(xt) always does. This is because STELA and
FLEXA are descent direction methods. For FLEXA, when

2x0 is set to x0 = 0, so Ax0 − b = −b.
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Figure 6. Time versus error of different algorithms for LASSO. In the left
and right column, the dimension of A is 2000 × 4000 and 5000 × 10000,
respectively. In the higher, middle and lower column, the density of xtrue is
0.1, 0.2 and 0.4.

the decreasing rate is low (d = 10−4), no improvement
is observed after 100 iterations. As a matter of fact, the
stepsize in those iterations is so large that the function value
is actually dramatically increased, and thus the associated
iterations are discarded in Fig. 5. A similar behavior is also
observed for d = 10−3, until the stepsize becomes small
enough. When the stepsize is quickly decreasing (d = 10−1),
although improvement is made in all iterations, the asymptotic
convergence speed is slow because the stepsize is too small
to make notable improvement. For this example, the choice
d = 10−2 performs well, but the value of a good decreasing
rate is parameters dependent (e.g., A, b and µ) and no general
rule performs equally well for all choices of parameters. By
comparison, the proposed algorithm STELA is fast to converge
and exhibits stable performance.

We also compare in Fig. 6 the proposed algorithm STELA
with other competitive algorithms in literature: FISTA [31],
ADMM [12], GreedyBCD [35] and SpaRSA [36]. We sim-
ulated GreedyBCD of [35] because it exhibits guaranteed
convergence. The dimension of A is 2000 × 4000 (the left
column of Fig. 6) and 5000 × 10000 (the right column).
It is generated by the Matlab command randn with each
row being normalized to unity. The density (the proportion of
nonzero elements) of the sparse vector xtrue is 0.1 (the upper
row of Fig. 6), 0.2 (the middle row) and 0.4 (the lower row).
The vector b is generated as b = Axtrue +e where e is drawn
from a Gaussian white distribution with variance 10−4. The
regularization gain µ is set to µ = 0.1

∥∥ATb
∥∥
∞, which allows

xtrue to be recovered to a high accuracy [36].
The simulations are carried out under Matlab R2012a on a

PC equipped with an operating system of Windows 7 64-bit
Home Premium Edition, an Intel i5-3210 2.50GHz CPU, and a
8GB RAM. All of the Matlab codes are available online [34].
The comparison is made in terms of CPU time that is required
until either a given error bound e(xt) ≤ 10−6 is reached or the
maximum number of iterations, namely, 2000, is reached. The
running time consists of both the initialization stage required
for preprocessing (represented by a flat curve) and the formal
stage in which the iterations are carried out. For example, in
the proposed algorithm STELA, d(ATA) is computed3 in the
initialization stage since it is required in the iterative variable
update in the formal stage, cf. (37). The simulation results are
averaged over 20 instances.

We observe from Fig. 6 that the proposed algorithm STELA
converges faster than all competing algorithms. Some further
observations are in order.
• The proposed algorithm STELA is not sensitive to the

density of the true signal xtrue. When the density is increased
from 0.1 (left column) to 0.2 (middle column) and then to 0.4
(right column), the CPU time increases negligibly.
• The proposed algorithm STELA scales relatively well with

the problem dimension. When the dimension of A is increased
from 2000×4000 (the left column) to 5000×10000 (the right
column), the CPU time is only marginally increased.
• The initialization stage of ADMM is time consuming

because of some expensive matrix operations as, e.g., AAT ,(
I + 1

cAAT
)−1

and AT
(
I + 1

cAAT
)−1

A (c is a given
positive constant). More details can be found in [12, Sec.
6.4]. Furthermore, the CPU time of the initialization stage of
ADMM is increased dramatically when the dimension of A is
increased from 2000× 4000 to 5000× 10000.
• SpaRSA performs better when the density of xtrue is

smaller, e.g., 0.1, than when it is large, e.g., 0.2 and 0.4.
• The asymptotic convergence speed of GreedyBCD is

slow, because only one variable is updated in each iteration.

C. Nonconvex LASSO
In this subsection, we show that the fast convergence

behavior observed in convex problems studied in Sec. IV-A
and Sec. IV-B extends to nonconvex optimization problems.

We consider the following nonconvex LASSO problem
introduced in [17]:

minimize
x

1
2 ‖Ax− b‖22 −

1
2c ‖x‖

2
2 + µ ‖x‖1 , (42)

where A ∈ RN×N (with N � K), b ∈ RN×1, c > 0, and
µ > 0 are given parameters. Problem (42) is an instance of
(2) with the following decomposition:

f(x) , 1
2 ‖Ax− b‖22−

1
2c ‖x‖

2
2 , and g(x) , µ ‖x‖1 . (43)

Since the minimum eigenvalue of ATA is 0 and ATA −
cI � 0, f(x) defined in (43) is nonconvex and so is
problem (42). To apply Algorithm 2, we adopt the following
approximate function:

f̃(x;xt) =
∑K
k=1(f1(xk,x

t
−k)+∇kf2(xt)(xk−xtk)+g(xk)),

(44)

3The Matlab command is sum(A.^2,1), so matrix-matrix multiplication
between AT and A is not required.
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where f1(x) , 1
2 ‖Ax− b‖22 and f2(x) , − 1

2c ‖x‖
2
2. Note

that different from the approximation function (35) used in
LASSO, the approximate function of f(x) in (44) comes
from preserving the convex part of f(x), namely, f1(x), while
linearizing the nonconvex part of f(x), namely, f2(x).

Since the approximate function (44) can be decomposed
among different elements of x and problem (42) is un-
constrained, the approximate problem consists of K scalar
problems, which are then solved in parallel:

Bkxt = arg min
xk

{
f1(xk,x

t
−k)+∇kf2(xt)(xk − xtk)+g(xk)

}
= dk(ATA)−1Sµ(rk(xt) + cxtk), k = 1, . . . ,K,

where Sa(b) and r(x) is defined in (36), or more compactly:

Bxt = d(ATA)−1 ◦ Sµ1(r(xt) + cxt). (45)

The stepsize based on the proposed exact line search (23) is

γt = arg min
0≤γ≤1

{
f(xt + γ(Bxt − xt)) + γ(g(Bxt)− g(xt))

}
= arg min

0≤γ≤1


1
2 (‖A(Bxt − xt)‖22 − c ‖Bxt − xt‖22) · γ2

+((Axt − b)TA(Bxt − xt)− cxt) · γ
+(µ(‖Bxt‖1 − ‖xt‖1)) · γ

 ,

(46)

which consists in minimizing a quadratic function with a scalar
variable subject to a bound constraint.

Suppose ‖A(Bxt − xt)‖22 − c ‖Bxt − xt‖22 < 0. Then the
objective function in (46) is concave. Since Bxt − xt is a
descent direction, it must be that γt > 0 and thus

∇γf(xt + γ(Bxt − xt)) + γ(g(Bxt)− g(xt))
∣∣
γ=0

< 0.

In this case, γt in (46) is given as follows:

γt = 1, if
∥∥A(Bxt − xt)

∥∥2
2
− c

∥∥Bxt − xt
∥∥2
2
< 0. (47a)

If, on the other hand, ‖A(Bxt − xt)‖22−c ‖Bxt − xt‖22 ≥ 0,
the optimization problem in (46) is convex and

γt=

[
−

(Axt−b)TA(Bxt−xt)−cxt+µ(‖Bxt‖1−‖xt‖1)

‖A(Bxt − xt)‖22 − c ‖Bxt − xt‖22

]1
0

.

(47b)
Therefore, both the update direction and the stepsize can be
found by closed-form expressions, namely, (45) and (47).

Simulations. We test the convergence speed and scalability
of STELA for the nonconvex LASSO problem (42), where
the update direction and the stepsize is given by (45) and
(47), respectively. The parameters A, b, and µ are generated
in the same way as the LASSO problem in Sec. IV-B, except
that the rows of A are not normalized. The density of xtrue
is 0.2, and c = N/200. The dimension of A is 2000× 4000,
5000× 10000, and 10000× 20000, respectively.

From Fig. 7, we observe that, as expected, the objective
function value is monotonically decreasing, because STELA
is an instance of Algorithm 2 which is essentially an itera-
tive descent direction method. The convergence to a (local)
minimum is observed in less than 10 iterations, even when
the dimension of A is as large as 10000 × 20000. More
importantly, by comparing the different curves in Fig. 7, the
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Figure 7. Convergence of STELA for nonconvex LASSO: the objective value
versus the number of iterations.

convergence speed seems independent of the dimension of A,
so the proposed STELA scales very well. Furthermore, due to
the closed-form updates, the iteration complexity is extremely
low. Therefore, the fast convergence, easy implementation
and scalability observed in LASSO in Sec. IV-B extend to
nonconvex optimization problems as well.

V. CONCLUDING REMARKS

In this paper, we have proposed a novel iterative algorithm
based on convex approximation. The only requirement on the
approximate function is that it is pseudo-convex. On the one
hand, the relaxation of the assumptions on the approximate
functions can make the approximate problems much easier
to solve. We show by a counter-example that the assumption
on pseudo-convexity is tight in the sense that when it is
violated, the algorithm may not converge. On the another hand,
the stepsize based on the exact/successive line search yields
notable progress in each iteration. Additional structures can be
exploited to assist with the selection of the stepsize, so that
the algorithm can be further accelerated. The advantages and
benefits of the proposed algorithm have been demonstrated
using prominent applications in communication networks and
signal processing, and they are also numerically consolidated.
The proposed algorithm can readily be applied to solve other
problems as well, such as portfolio optimization [10].

APPENDIX A
PROOF OF PROPOSITION 1

Proof: i) Firstly, suppose y is a stationary point of (1); it
satisfies the first-order optimality condition:

∇f(y)T (x− y) ≥ 0, ∀x ∈ X .

Using Assumption (A3), we get

∇f̃(y;y)T (x− y) ≥ 0, ∀x ∈ X .

Since f̃(•;y) is pseudo-convex, the above condition implies

f̃(x;y) ≥ f̃(y;y), ∀x ∈ X .
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That is, f̃(y;y) = minx∈X f̃(x;y) and y ∈ S(y).
Secondly, suppose y ∈ S(y). We readily get

∇f(y)T (x− y) = ∇f̃(y;y)T (x− y) ≥ 0, ∀x ∈ X , (48)

where the equality and inequality comes from Assumption
(A3) and the first-order optimality condition, respectively, so
y is a stationary point of (1).

ii) From the definition of Bx, it is either

f̃(By;y) = f̃(y;y), (49a)

or
f̃(By;y) < f̃(y;y), (49b)

If (49a) is true, then y ∈ S(y) and, as we have just shown, it is
a stationary point of (1). So only (49b) can be true. We know
from the pseudo-convexity of f̃(x;y) in x (cf. Assumption
(A1)) and (49b) that By 6= y and

∇f̃(y;y)T (By − y) = ∇f(y)T (By − y) < 0, (50)

where the equality comes from Assumption (A3).

APPENDIX B
PROOF OF THEOREM 2

Proof: Since Bxt is the optimal point of (8), it satisfies
the first-order optimality condition:

∇f̃(Bxt;xt)T (x− Bxt) ≥ 0, ∀x ∈ X . (51)

If (49a) is true, then xt ∈ S(xt) and it is a stationary point
of (1) according to Proposition 1 (i). Besides, it follows from
(48) (with x = Bxt and y = xt) that ∇f(xt)T (Bxt−xt) ≥ 0.
Note that equality is actually achieved, i.e.,

∇f(xt)T (Bxt − xt) = 0

because otherwise Bxt − xt would be an ascent direction
of f̃(x;xt) at x = xt and the definition of Bxt would be
contradicted. Then from the definition of the successive line
search, we can readily infer that

f(xt+1) ≤ f(xt). (52)

It is easy to see (52) holds for the exact line search as well.
If (49b) is true, xt is not a stationary point and Bxt − xt

is a strict descent direction of f(x) at x = xt according to
Proposition 1 (ii): f(x) is strictly decreased compared with
f(xt) if x is updated at xt along the direction Bxt − xt.
From the definition of the successive line search, there always
exists a γt such that 0 < γt ≤ 1 and

f(xt+1) = f(xt + γt(Bxt − xt)) < f(xt). (53)

This strict decreasing property also holds for the exact line
search because it is the stepsize that yields the largest decrease,
which is always larger than or equal to that of the successive
line search.

We know from (52) and (53) that {f(xt)} is a monoton-
ically decreasing sequence and it thus converges. Besides,
for any two (possibly different) convergent subsequences
{xt}t∈T1 and {xt}t∈T2 , the following holds:

lim
t→∞

f(xt) = lim
T13t→∞

f(xt) = lim
T23t→∞

f(xt).

Since f(x) is a continuous function, we infer from the
preceding equation that

f

(
lim

T13t→∞
xt
)

= f

(
lim

T23t→∞
xt
)
. (54)

Now consider any convergent subsequence {xt}t∈T with
limit point y, i.e., limT 3t→∞ xt = y. To show that y is
a stationary point, we first assume the contrary: y is not
a stationary point. Since f̃(x;xt) is continuous in both x
and xt by Assumption (A2) and {Bxt}t∈T is bounded by
Assumption (A5), it follows from [24, Th. 1] that there exists
a sequence {Bxt}t∈Ts with Ts ⊆ T such that it converges
and limTs3t→∞ Bxt ∈ S(y). Since both f(x) and ∇f(x) are
continuous, applying [24, Th. 1] again implies there is a Ts′
such that Ts′ ⊆ Ts(⊆ T ) and

{
xt+1

}
t∈Ts′

converges to y′

defined as:
y′ , y + ρ(By − y),

where ρ is the stepsize when either the exact or successive
line search is applied to f(y) along the direction By − y.
Since y is not a stationary point, it follows from (53) that
f(y′) < f(y), but this would contradict (54). Therefore y is
a stationary point, and the proof is completed.

APPENDIX C
PROOF OF THEOREM 3

Proof: We first need to show that Proposition 1 still holds.
(i) We prove y is a stationary point of (4) if and only if

yk ∈ arg minxk∈Xk
f(xk,y−k) for all k.

Suppose y is a stationary point of (4), it satisfies the first-
order optimality condition:

∇f(y)T (x− y) =
∑K
k=1∇kf(y)T (xk − yk) ≥ 0,∀x ∈ X ,

and it is equivalent to

∇kf(y)T (xk − yk) ≥ 0,∀xk ∈ Xk.

Since f(x) is pseudo-convex in xk, the above condition
implies f(yk,y−k) = minxk∈Xk

f(xk,y−k) for all k =
1, . . . ,K.

Suppose yk ∈ arg minxk∈Xk
f(xk,y−k) for all k =

1, . . . ,K. The first-order optimality conditions yields

∇kf(y)T (xk − yk) ≥ 0,∀xk ∈ Xk.

Adding the above inequality for all k = 1, . . . ,K yields

∇f(y)T (x− y) ≥ 0,∀x ∈ X .

Therefore, y is a stationary point of (4).
(ii) We prove that if y is not a stationary point of (4), then
∇f(y)T (By − y) < 0.

It follows from the optimality of Bkx that

f(Bky,y−k) ≤ f(yk,y−k),

and

∇kf(Bky,y−k)T (xk − Bky) ≥ 0,∀xk ∈ Xk. (55)

Firstly, there must exist an index j such that

f(Bjy,y−j) < f(yj ,y−j), (56)
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otherwise y would be a stationary point of (4). Since f(x) is
pseudo-convex in xk for k = 1, . . . ,K, it follows from (56)
that

∇jf(y)T (Bjy − yj) < 0. (57)

Secondly, for any index k such that f(Bky,y−k) =
f(yk,y−k), yk minimizes f(xk,y−k) over xk ∈ Xk and
∇kf(yk,y−k)T (xk − yk) ≥ 0 for any xk ∈ X . Setting
xk = Bky yields

∇kf(yk,y−k)T (Bky − yk) ≥ 0. (58)

Similarly, setting xk = yk in (55) yields

∇kf(Bky,y−k)T (yk − Bky) ≥ 0. (59)

Adding (58) and (59), we can infer that (∇kf(y) −
∇kf(Bky,y−k))T (yk−Bky) ≥ 0. Therefore, we can rewrite
(59) as follows

0 ≤ ∇kf(Bky,y−k)T (yk − Bky)

= (∇kf(Bky,y−k)−∇kf(y) +∇kf(y))T (yk − Bky),

and thus

∇kf(y)T (Bky − yk) ≤
−(∇kf(Bky,y−k)−∇kf(y))T (Bky − yk) ≤ 0. (60)

Adding (57) and (60) over all k = 1, . . . ,K yields

∇f(y)T (By − y) =
∑K
k=1∇kf(y)T (Bky − yk) < 0.

That is, By− y is a descent direction of f(x) at the point y.
The proof of Theorem 2 can then be used verbatim to

prove the convergence of the algorithm with the approximate
problem (28) and the exact/successive line search.
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