
1

A Parallel Stochastic Approximation Method for
Nonconvex Multi-Agent Optimization Problems

Yang Yang, Gesualdo Scutari, Daniel P. Palomar, and Marius Pesavento

Abstract—Consider the problem of minimizing the expected
value of a (possibly nonconvex) cost function parameterized by
a random (vector) variable, when the expectation cannot be
computed accurately (e.g., because the statistics of the random
variables are unknown and/or the computational complexity is
prohibitive). Classical sample stochastic gradient methods for
solving this problem may empirically suffer from slow conver-
gence. In this paper, we propose for the first time a stochastic
parallel Successive Convex Approximation-based (best-response)
algorithmic framework for general nonconvex stochastic sum-
utility optimization problems, which arise naturally in the de-
sign of multi-agent systems. The proposed novel decomposition
enables all users to update their optimization variables in parallel
by solving a sequence of strongly convex subproblems, one for
each user. Almost surely convergence to stationary points is
proved. We then customize our algorithmic framework to solve
the stochastic sum rate maximization problem over Single-Input-
Single-Output (SISO) frequency-selective interference channels,
multiple-input-multiple-output (MIMO) interference channels,
and MIMO multiple-access channels. Numerical results show that
our algorithms are much faster than state-of-the-art stochastic
gradient schemes while achieving the same (or better) sum-rates.

Index Terms—Multi-agent systems, parallel optimization,
stochastic approximation.

I. INTRODUCTION

Wireless networks are composed of users that may have
different objectives and generate interference when no mul-
tiplexing scheme is imposed to regulate the transmissions;
examples are peer-to-peer networks, cognitive radio systems,
and ad-hoc networks. A usual and convenient way of designing
such multi-user systems is by optimizing the “social function”,
i.e., the (weighted) sum of the users’ objective functions. This
formulation however requires the knowledge of the system
parameters, which in practice is either difficult to acquire
(e.g., when the parameters are rapidly changing) or imperfect
due to estimation errors. In such scenarios, it is convenient
to focus on the optimization of long-term performance of
the system, measured as the expected value of the social
function parametrized by the random system parameters. In
this paper, we consider the frequent and difficult case wherein
(the expected value of) the social function is nonconvex and
the expectation cannot be computed (either numerically or in
closed form). Such a system design naturally falls into the
class of stochastic optimization [2, 3].

Gradient methods for unconstrained stochastic nonconvex
optimization problems have been studied in [4, 5, 6], where
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almost sure convergence to stationary points has been es-
tablished, under some technical conditions; see, e.g., [5].
The extension of these methods to constrained optimization
problems is not straightforward; in fact, the descent-based
convergence analysis developed for unconstrained gradient
methods no longer applies to their projected counterpart (due
to the presence of the projection operator). Convergence of
stochastic gradient projection methods has been proved only
for convex objective functions [4, 7, 8].

To cope with nonconvexity, gradient averaging seems to be
an essential step to resemble convergence; indeed, stochastic
conditional gradient methods for nonconvex constrained prob-
lems hinge on this idea [9, 10, 11, 12]: at each iteration the new
update of the variables is based on the average of the current
and past gradient samples. Under some technical conditions,
the average sample gradient eventually resembles the nominal
(but unavailable) gradient of the (stochastic) objective function
[9, 13]; convergence analysis can then borrow results from
deterministic nonlinear programming.

Numerical experiments for large classes of problems show
that plain gradient-like methods usually converge slowly and
are very sensitive to the choice of the step-size. Some ac-
celeration techniques have been proposed in the literature
[8, 14], but only for strongly convex objective functions. Here
we are interested in nonconvex (constrained) stochastic prob-
lems. Moreover, (proximal, accelerated) stochastic gradient-
based schemes use only the first order information of the
objective function (or its realizations); recently it was shown
[15, 16, 17] that for deterministic nonconvex optimization
problems exploiting the structure of the function by replacing
its linearization with a “better” approximant can enhance
empirical convergence speed. In this paper we aim at bringing
this idea into the context of stochastic optimization problems.

Our main contribution is to develop a new, broad algorith-
mic framework for the computation of stationary solutions of
a wide class of (stochastic) nonconvex optimization problems,
encompassing many multi-agent system designs of practical
interest. The essential idea underlying our approach is to
decompose the original nonconvex stochastic problem into
a sequence of (simpler) deterministic subproblems whereby
the objective function is replaced by suitable chosen sample
convex approximations; the subproblems can be then solved
in a parallel and distributed fashion across the users. Other
key features of our framework are: i) no knowledge of the ob-
jective function parameters (e.g., the Lipschitz constant of the
gradient) is required; ii) it is very flexible in the choice of the
approximant of the nonconvex objective function, which need
not be necessarily its first or second order approximation (like
in proximal-gradient schemes); of course it includes, among
others, updates based on stochastic gradient- or Newton-
type approximations; iii) it can be successfully used also to
robustify distributed iterative algorithms solving deterministic
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social problems, when only inexact estimates of the system
parameters are available; and iv) it encompasses a gamut of
novel algorithms, offering a wide flexibility to control itera-
tion complexity, communication overhead, and convergence
speed, while converging under the same conditions. These
desirable features make our schemes applicable to several
different problems and scenarios. As illustrative examples,
we customize our algorithms to some resource allocations
problems in wireless communications, namely: the sum-rate
maximization problems over MIMO Interference Channels
(ICs) and Multiple Access Channels (MACs). The resulting
algorithms outperform existing (gradient-based) methods both
theoretically and numerically.

The proposed decomposition technique hinges on successive
convex approximation (SCA) methods, and it is a nontrivial
generalization of [15] to stochastic optimization problems.
An SCA framework for stochastic optimization problems has
also been proposed in a recent submission [18]1; however
our method differs from [18] in many features. First of all,
we relax the key requirement that the convex approximation
must be a tight global upper bound of the (sample) objective
function, as required instead in [18]. This represents a turn-
ing point in the design of distributed stochastic SCA-based
methods, enlarging substantially the class of (large scale)
stochastic nonconvex problems solvable using our framework.
Second, even when the aforementioned constraint can be met,
it is not always guaranteed that the resulting convex (sample)
subproblems are decomposable across the users, implying that
a centralized implementation might be required in [18]; our
schemes instead naturally lead to a parallel and distributed
implementation. Third, the proposed methods converge under
weaker conditions than those in [18].

Finally, within the classes of approximation-based methods
for stochastic optimization problems, it is worth mentioning
the so-called Sample Average Approach (SAA) [18, 19, 20,
21]: the “true” (stochastic) objective function is approximated
by an ensemble average. Then the resulting deterministic SSA
optimization problem has to be solved by an appropriate
numerical procedure. When the original objective function is
nonconvex, however, computing the global optimal solution
of the SAA at each step may not be easy, if not impossible.
Therefore SSA-based methods are generally used to solve
stochastic convex optimization problems only.

The rest of the paper is organized as follows. Sec. II for-
mulates the problem along with some interesting applications.
The novel stochastic decomposition framework is introduced
in Sec. III; customizations of the main algorithms to sample
applications are discussed in Sec. IV. Finally, Sec. V draws
some conclusions.

II. PROBLEM FORMULATION

We consider the design of a multi-agent system composed of
I users; each user i has his own strategy vector xi to optimize,
which belongs to the feasible convex set Xi ⊆ Cni . The
variables of the other users are denoted by x−i , (xj)

I
j=1,j 6=i,

and the joint strategy set of all users is X = X1 × . . .×XI .

1A preliminary version of our work appeared independently before [18] at
IEEE SPAWC 2013 [1].

The stochastic social optimization problem is formulated as:

minimize
x,{xi}

U(x) , E

[ ∑
j∈If

fj(x, ξ)

]
subject to xi ∈ Xi, i = 1, . . . , I,

(1)

where If , {1, . . . , If}, with If being the number of
functions; each cost function fj(x, ξ) : X × D → R depends
on the joint strategy vector x and a random vector ξ, whose
probability distribution is defined on a set D ⊆ Cm; and the
expectation is taken with respect to (w.r.t.) ξ. Note that the
optimization variables can be complex-valued; in such a case,
all the gradients of real-valued functions are intended to be
conjugate gradients [22, 23].
Assumptions: We make the following blanket assumptions:
(a) Each Xi is compact and convex;
(b) Each fj(•, ξ) is continuously differentiable on X , for any

given ξ, and the gradient is Lipschitz continuous with
constant L∇fj(ξ). Furthermore, the gradient of U(x) is
Lipschitz continuous with constant L∇U < +∞.

These assumptions are quite standard and are satisfied by a
large class of problems. Note that the existence of a solution
to (1) is guaranteed by Assumption (a). Since U(x) is not
assumed to be jointly convex in x, (1) is generally nonconvex.
Some instances of (1) satisfying the above assumptions are
briefly listed next.
Example #1: Consider the maximization of the ergodic sum-
rate over frequency-selective ICs:

maximize
p1,...,pI

E

[
N∑
n=1

I∑
i=1

log
(

1 +
|hii,n|2pi,n

σ2
i,n+

∑
j 6=i |hij,n|2pj,n

)]
subject to pi ∈ Pi , {pi : pi ≥ 0,1Tpi ≤ Pi}, ∀i,

(2)
where pi , {pi,n}Nn=1 with pi,n being the transmit power
of user i on subchannel (subcarrier) n, N is the number of
parallel subchannels, Pi is the total power budget, hij,n is
the channel coefficient from transmitter j to receiver i on
subchannel n, and σ2

i,n is the variance of the thermal noise
over subchannel n at the receiver i. The expectation is over
channel coefficients (hij,n)i,j,n.
Example #2: The following maximization of the ergodic sum-
rate over MIMO ICs also falls into the class of problems (1):

maximize
Q1,...,QI

E

[
I∑
i=1

log det
(
I + HiiQiH

H
iiRi(Q−i,H)−1

)]
subject to Qi ∈ Qi , {Qi : Qi � 0,Tr(Qi) ≤ Pi}, ∀i,

(3)
where Ri (Q−i,H) , RNi +

∑
j 6=i HijQjH

H
ij is the covari-

ance matrix of the thermal noise RNi (assumed to be full
rank) plus the multi-user interference, Pi is the total power
budget, and the expectation in (3) is taken over the channels
H , (Hij)

I
i,j=1.

Example #3: Another application of interest is the maximiza-
tion of the ergodic sum-rate over MIMO MACs:

maximize
Q1,...,QI

E
[
log det

(
RN +

∑I
i=1 HiQiH

H
i

)]
subject to Qi ∈ Qi, ∀i.

(4)
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This is a special case of (1) where the utility function is
concave in Q , (Qi)

I
i=1, If = 1, If = {1}, and the

expectation in (4) is taken over the channels H , (Hi)
I
i=1.

Example #4: The algorithmic framework that will be intro-
duced shortly can be successfully used also to robustify dis-
tributed iterative algorithms solving deterministic (nonconvex)
social problems, but in the presence of inexact estimates of the
system parameters. More specifically, consider as example the
following sum-cost minimization multi-agent problem:

minimize
x

∑I
i=1 fi(x1, . . . ,xI)

subject to xi ∈ Xi, i = 1, . . . , I,
(5)

where fi(xi,x−i) is uniformly convex in xi ∈ Xi. An efficient
distributed algorithm converging to stationary solutions of (5)
has been recently proposed in [15]: at each iteration t, given
the current iterate xt, every agent i minimizes (w.r.t. xi ∈ Xi)
the following convexified version of the social function:

fi(xi,x
t
−i) +

〈
xi − xti,

∑
j 6=i∇ifj(x

t)
〉

+ τi
∥∥xi − xti

∥∥2 ,
where ∇ifj(x) stands for ∇x∗i

fj(x), and 〈a,b〉 , <
(
aHb

)
(‖a‖ =

√
〈a,a〉). The evaluation of the above function

requires the exact knowledge of ∇ifj(xt) for all j 6= i.
In practice, however, only a noisy estimate of ∇ifj(xt) is
available [24, 25, 26]. In such cases, convergence of pricing-
based algorithms [15, 27, 28, 29] is in jeopardy. We will
show in Sec. IV-C that the proposed framework can be readily
applied, for example, to robustify (and make convergent), e.g.,
pricing-based schemes, such as [15, 27, 28, 29].

Since the class of problems (1) is in general nonconvex
(possibly NP hard [30]), the focus of this paper is to design dis-
tributed solution methods for computing stationary solutions
(possibly local minima) of (1). Our major goal is to devise
parallel (nonlinear) best-response schemes that converge even
when the expected value in (1) cannot be computed accurately
and only sample values are available.

III. A NOVEL PARALLEL STOCHASTIC DECOMPOSITION

The social problem (1) faces two main issues: i) the non-
convexity of the objective functions; and ii) the impossibility
to estimate accurately the expected value. To deal with these
difficulties, we propose a decomposition scheme that consists
in solving a sequence of parallel strongly convex subproblems
(one for each user), where the objective function of user i is
obtained from U(x) by replacing the expected value with a
suitably chosen incremental estimate of it and linearizing the
nonconvex part. More formally, at iteration t+1, user i solves
the following problem: given xt−i and ξt,

x̂i(x
t, ξt) , arg min

xi∈Xi

f̂i(xi; x
t, ξt), (6a)

with the approximation function f̂i(xi; xt, ξt) defined as

f̂i(xi; x
t, ξt) ,

ρt
∑
j∈Cti

fj(xi,x
t
−i, ξ

t) + ρt
〈
xi − xti,πi(x

t, ξt)
〉

+(1− ρt)
〈
xi − xti, f

t−1
i

〉
+ τi

∥∥xi − xti
∥∥2; (6b)

where the pricing vector πi(x, ξ) is given by

πi
(
xt, ξt

)
,
∑
j∈Cti

∇ifj
(
xt, ξt

)
; (6c)

and f ti is an accumulation vector updated recursively according
to
f ti = (1− ρt)f t−1i + ρt

(
πi(x

t, ξt) +
∑
j∈Cti
∇ifj(xt, ξt)

)
,

(6d)
with ρt ∈ (0, 1] being a sequence to be properly chosen (ρ0 =
1). The other symbols in (6) are defined as follows:
• In (6d): Cti is any subset of Sti , {i ∈ If :
fi(•,xt−i, ξ

t) is convex on Xi} that is the set of indices
of functions that are convex in xi, given xt−i and ξt;

• In (6c): Cti denotes the complement of Cti ; it contains (at
least) the indices of functions that are nonconvex in xi,
given xt−i and ξt;

• In (6c)-(6d):∇ifj(x, ξ) is the gradient of fj(x, ξ) w.r.t.
x∗i (the complex conjugate of xi). Since fj(x, ξ) is real-
valued, ∇x∗i

f(x, ξ) = ∇x∗i
f(x, ξ)∗ = (∇xi

f(x, ξ))∗.
Given x̂i(x, ξ), x is updated according to

xt+1
i = xti + γt+1(x̂i(x

t, ξt)− xti), i = 1, . . . ,K, (7)

where γt ∈ (0, 1]. It turns our that xt is a random vector
depending on F t, the past history of the algorithm up to
iteration t:

F t ,
{
x0, . . . ,xt−1, ξ0, . . . , ξt−1, γ1, . . . , γt, ρ0, . . . , ρt

}
;
(8)

therefore x̂(xt, ξt) depends on F t as well (we omit this
dependence for notational simplicity).

The subproblems (6a) have an interesting interpretation:
each user solves a sample convex approximation of the original
nonconvex stochastic function. The first term in (6b) preserves
the convex component (or a part of it, if Cti ⊂ Sti ) of the
(instantaneous) social function. The second term in (6b)−the
pricing vector πi(x, ξ)−comes from the linearization of (at
least) the nonconvex part. The vector f ti in the third term
represents the incremental estimate of∇x∗U(xt) (whose value
is not available), as one can readily check by substituting (6c)
into (6d):

f ti = (1− ρt)f t−1i + ρt
∑
j∈If ∇ifj(x

t, ξ). (9)

Roughly speaking, the goal of this third term is to estimate on-
the-fly the unknown ∇x∗U(xt) by its samples collected over
the iterations; based on (9), such an estimate is expected to
become more and more accurate as t increases, provided that
the sequence ρt is properly chosen (this statement is made
rigorous shortly in Theorem 1). The last quadratic term in
(6b) is the proximal regularization whose numerical benefits
are well-understood [31].

Given (6), we define the “best-response” mapping as

X 3 y 7→ x̂(y, ξ) , (x̂i(y, ξ))
I
i=1 . (10)

Note that x̂(•, ξ) is well-defined for any given ξ because the
objective function in (6) is strongly convex with constant τmin:

τmin , min
i=1,...,I

{τi} . (11)
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Algorithm 1: Stochastic parallel decomposition algorithm

Data: τ , (τi)
I
i=1 ≥ 0, {γt}, {ρt}, x0 ∈ X ; set t = 0.

(S.1): If xt satisfies a suitable termination criterion: STOP.
(S.2): For all i = 1, . . . , I , compute x̂i(x

t, ξt) [cf. (6)].
(S.3): For all i = 1, . . . , I , update xt+1 according to

xt+1
i = (1− γt+1)xti + γt+1 x̂i(x

t, ξt).

(S.4): For all i = 1, . . . , I , update f ti according to (6d).
(S.5): t← t+ 1, and go to (S.1).

Our decomposition scheme is formally described in Algo-
rithm 1, and its convergence properties are stated in Theorem
1, under the following standard boundedness assumptions on
the instantaneous gradient errors [24, 32]:

Assumption (c): The instantaneous gradient is unbiased with
bounded variance in the following sense:

E
[
∇U(xt)−

∑
j∈If∇fj(x

t, ξt)
∣∣F t] = 0, t = 0, 1, . . .

and

E
[∥∥∇U(xt)−

∑
j∈If∇fj(x

t, ξt)
∥∥2∣∣F t] <∞, t = 0, 1, . . .

This assumption is readily satisfied if ξ is a bounded i.i.d.
random variable.

Theorem 1. Given problem (1) under Assumptions (a)-(c),
suppose that τmin > 0 and the stepsizes {γt} and {ρt} are
chosen so that

i) γt → 0,
∑
t γ

t =∞,
∑

(γt)2 <∞, (12a)

ii) ρt → 0,
∑
t ρ
t =∞,

∑
(ρt)2 <∞, (12b)

iii) lim
t→∞

γt/ρt = 0, (12c)

iv) lim sup
t→∞

ρt
(∑

j∈IfL∇fj(ξt)

)
= 0, a.s. (12d)

Then, every limit point of the sequence {xt} generated by
Algorithm 1 (at least one of such point exists) is a stationary
point of (1) almost surely.

Proof: See Appendix A.
On Assumption (c): The boundedness condition is in terms
of the conditional expectation of the (random) gradient error.
Compared with [18], Assumption (c) is weaker because it is
required in [18] that every realization of the (random) gradient
error must be bounded.
On Condition (12d): The condition has the following inter-
pretation: all increasing subsequences of

∑
j∈If L∇fj(ξt) must

grow slower than 1/ρt. We will discuss later in Sec. IV how
this assumption is satisfied by specific applications. Note that
if
∑
j∈If L∇fj(ξ) is uniformly bounded for any ξ (which is

indeed the case if ξ is a bounded random vector), then (12d)
is trivially satisfied.
On Algorithm 1: To our best knowledge, Algorithm 1 is the
first parallel best-response (e.g., nongradient-like) scheme for
nonconvex stochastic social problems: all the users update in
parallel their strategies (possibly with a memory) solving a
sequence of decoupled (strongly) convex subproblems (6). It
is expected to perform better than classical stochastic gradient-
based schemes at no the cost of extra signaling, because the

convexity of the objective function, if any, is better exploited.
Our experiments on specific applications confirm this intuition;
see Sec. IV. Moreover, it is guaranteed to converge under
the weakest assumptions available in literature while offering
some flexibility in the choice of the free parameters [cf.
Theorem 1].
Diminishing stepsize rules: In order to have convergence,
a diminishing stepsize rule satisfying (12) is necessary. An
instance of (12) is, e.g., the following:

γt =
1

tα
, ρt =

1

tβ
, 0.5 < β < α ≤ 1. (13)

Roughly speaking, (12) says that the stepsizes γt and ρt, while
diminishing (with γt decreasing faster than ρt), need not go to
zero too fast. This kind of stepsize rules are of the same spirit
of those used to guarantee convergence of gradient methods
with error; see [33] for more details.
Implementation issues: In order to compute the best-
response, each user needs to know

∑
j∈Cti

fj(xi,x
t
−i, ξ

t)

and the pricing vector πi(x
t, ξt). The signaling required to

acquire this information is of course problem-dependent. If
the problem under consideration does not have any specific
structure, the most natural message-passing strategy is to
communicate directly xt−i and πi(x

t, ξt). However, in many
specific applications much less signaling may be needed; see
Sec. IV for some examples. Note that the signaling is of the
same spirit of that of pricing-based algorithms proposed in
the literature for the maximization of deterministic sum-utility
functions [15, 29]; no extra communication is required to
update f ti : once the new pricing vector πi(xt, ξt) is available,
the recursive update (6d) for the “incremental” gradient is
based on a local accumulation register keeping track of the
last iterate f t−1i . Note also that, thanks to the simultaneous
nature of the proposed scheme, the overall communication
overhead is expected to be less than that required to implement
sequential schemes, such as [29].

A. Some special cases

We customize next the proposed general algorithmic frame-
work to specific classes of problems (1) arising naturally in
many applications.

1) Stochastic proximal conditional gradient methods: Quite
interestingly, the proposed decomposition technique resembles
classical stochastic conditional gradient schemes [4] when one
chooses in (6b) Cti = ∅, for all i and t, resulting in the
following approximation function:

f̂i(xi; x
t, ξt) = ρt

〈
xi − xti,

∑
j∈If∇ifj

(
xt, ξt

)〉
+(1− ρt)

〈
xi − xti, f

t−1
i

〉
+ τi

∥∥xi − xti
∥∥2 , (14)

with f ti updated according to (9). Note that, however, tradi-
tional stochastic conditional gradient methods [9] do not have
the proximal regularization term in (14), which instead brings
in well-understood numerical benefits. Moreover, it is worth
mentioning that, for some of the applications introduced in
Sec. II, it is just the presence of the proximal term that allows
one to compute the best-response x̂i(x

t, ξt) resulting from the
minimization of (14) in closed-form; see Sec. IV-B.
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It turns out that convergence conditions of Algorithm 1 con-
tain as special cases those of classical stochastic conditional
gradient methods. But the proposed algorithmic framework is
much more general and, among all, is able to better exploit
the structure of the sum-utility function (if any) than just
linearizing everything; it is thus expected to be faster than
classical stochastic conditional gradient methods, a fact that is
confirmed by our experiments; see Sec. IV.

2) Stochastic best-response algorithm for single (convex)
functions: Suppose that the social function is a single func-
tion U(x) = E [f(x1, . . . ,xI , ξ)] on X =

∏
i Xi, and

f(x1, . . . ,xI , ξ) is uniformly convex in each xi (but not
necessarily jointly). Of course, this optimization problem can
be interpreted as a special case of the framework (1), with
If = 1 and If = {1} and Sti = {1}. Since f(•, ξ) is already
convex separately in the variables xi’s, a natural choice for the
approximants f̂i is setting Cti = Sti = {1} for all t, resulting
in the following:

f̂i(xi; x
t, ξt) = ρtf

(
xi,x

t
−i, ξ

t
)

+(1− ρt)
〈
xi − xti, f

t−1
i

〉
+ τi

∥∥xi − xti
∥∥2 , (15)

where f ti is updated according to f ti = (1− ρt) f t−1i +
ρt∇if

(
xt, ξt

)
. Convergence conditions are still given by

Theorem 1. It is worth mentioning that the same choice
comes out naturally when f(x1, . . . ,xI , ξ) is uniformly jointly
convex; in such a case the proposed algorithm converges (in
the sense of Theorem 1) to the global optimum of U(x). An
interesting application of this algorithm is the maximization
of the ergodic sum-rate over MIMO MACs in (4), resulting
in the first convergent simultaneous stochastic MIMO Iterative
Waterfilling algorithm in the literature; see Sec. IV-C.

3) Stochastic pricing algorithms: Suppose that I = If and
each Sti = {i} (implying that fi(•,x−i, ξ) is uniformly convex
on Xi). By taking each Cti = {i} for all t, the approximation
function in (6b) reduces to

f̂i(xi; x
t, ξt) , ρtfi(xi,x

t
−i, ξ

t) + ρt
〈
xi − xti,πi(x

t, ξt)
〉

+(1− ρt)
〈
xi − xti, f

t−1
i

〉
+ τi ‖xi − xti‖

2
,

(16)
where πi(x, ξ) =

∑
j 6=i∇ifj(x, ξ) and f ti = (1− ρt) f t−1i +

ρt(πi(x
t, ξt) +∇ifi(xi,xt−i, ξ

t)). This is the generalization
of the deterministic pricing algorithms [15, 29] to stochastic
optimization problems. Examples of this class of problems are
the ergodic sum-rate maximization problem over SISO and
MIMO IC in (2)-(3); see Sec. IV-A and Sec. IV-B.

4) Stochastic DC programming: A stochastic DC program-
ming problem is formulated as

minimize
x

Eξ

[∑
j∈If (fj(x, ξ)− gj(x, ξ))

]
subject to xi ∈ Xi, i = 1, . . . , I,

(17)

where both fj(•, ξ) and gj(•, ξ) are uniformly convex func-
tions on X . A natural choice of the approximation functions
f̂i for (17) is linearizing the concave part of the sample social
function, resulting in the following:

f̂i(xi; x
t, ξt) =ρt

∑
j∈If fj(xi,x

t
−i, ξ

t) + ρt
〈
xi − xti,πi(x

t, ξt)
〉

+ (1− ρt)
〈
xi − xti, f

t−1
i

〉
+ τi

∥∥xi − xti
∥∥2,

where πi(x, ξ) , −
∑
j∈If ∇igj(x, ξ) and f ti =

(1− ρt) f t−1i + ρt
(
πi(x

t, ξt) +
∑
j∈If ∇ifj(xi,x

t
−i, ξ

t)
)

.

IV. APPLICATIONS

We customize now the proposed algorithmic framework to
some of the applications introduced in Sec. II, and compare
the resulting algorithms with state-of-the-art schemes proposed
for the specific problems under considerations as well as more
classical stochastic gradient algorithms. Numerical results pro-
vide a solid evidence of the superiority of our approach.

A. Sum-rate maximization over frequency-selective ICs

Consider the sum-rate maximization problem over
frequency-selective ICs, as introduced in (2). Since the
instantaneous rate of each user i,

ri(pi,p−i,h) =

N∑
n=1

log

(
1 +

|hii,n|2 pi,n
σ2
i,n +

∑
j 6=i |hij,n|2 pj,n

)
,

is uniformly strongly concave in pi ∈ Pi, a natural choice
for the approximation function f̂i is the one in (16) wherein
ri(pi,p−i,h

t) is not touched while
∑
j 6=i rj(pj ,p−j ,h

t) is
linearized. This leads to the following best-response functions

p̂i(p
t,ht) = arg max

pi∈Pi

{
ρt · ri(pi,pt−i,ht) + ρt

〈
pi,π

t
i

〉
+(1− ρt)

〈
pi, f

t−1
i

〉
− τi

2

∥∥pi − pti
∥∥2}, (18a)

where πti=πi(p
t,ht) , (πi,n(pt,ht))Nn=1 with

πi,n(pt,ht) =
∑
j 6=i

∇pi,nrj(pt,ht)

= −
∑
j 6=i

|htji,n|2
SINRtj,n

(1 + SINRtj,n) · MUItj,n
,

MUItj,n , σ
2
j,n +

∑
i 6=j

|htji,n|2pti,n,

SINRtj,n = |htjj,n|2ptj,n/MUItj,n.

Then the variable f ti is updated according to f ti = (1 −
ρt)f t−1i + ρt(πti +∇pi

ri(p
t,ht)). Note that the optimization

problem in (18a) has a closed-form expression [15]:

p̂i,n(pt,ht) = WF
(
ρt,SINRti,n/p

t
i,n, τi,

ρtπti,n + (1− ρt)f t−1i,n + τ ti p
t
i,n − µ?

)
, (19)

where

WF(a, b, c, d) =
1

2

d
c
− 1

b
+

√(
d

c
+

1

b

)2

+
4a

c

+

,

and µ? is the Lagrange multiplier such that 0 ≤ µ? ⊥∑N
n=1 p̂i,n(pt,ht)− Pi ≤ 0, and it can be found by standard

bisection method.
The overall stochastic pricing-based algorithm is then given

by Algorithm 1 with best-response mapping defined in (19);
convergence is guaranteed under conditions i)-iv) in The-
orem 1. Note that the theorem is trivially satisfied using
stepsizes rules as required in i)-iii) [e.g., (13)]; the only
condition that needs some comment is condition iv). If
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Figure 1. Sum-rate versus iteration in frequency-selective ICs.

lim sup
t→∞

ρt
(∑

j∈IfL∇fj(ξt)

)
> 0, we can assume without

loss of generality (w.l.o.g.) that the sequence of the Lipschitz
constant

{∑
j∈IfL∇fj(ξt)

}
is increasing monotonically at a

rate no slower than 1/ρt (we can always limit the discussion
to such a subsequence). For any h̄ > 0, define p(h̄) ,
Prob(|hij,n| ≥ h̄) and assume w.l.o.g. that 0 ≤ p(h̄) < 1.
Note that the Lipschitz constant L∇fj(ξ) is upper bounded
by the maximum eigenvalue of the augmented Hessian of
fj(x, ξ) [34], and the maximum eigenvalue increasing mono-
tonically means that the channel coefficient is becoming larger
and larger (this can be verified by explicitly calculating the
augmented Hessian of fj(x, ξ); detailed steps are omitted due
to page limit). Since Prob(|ht+1

ij,n| ≥ |htij,n| for all t ≥ t0) ≤
Prob(|ht+1

ij,n| ≥ h̄ for all t ≥ t0) = p(h̄)t−t0+1 → 0, we can
infer that the magnitude of the channel coefficient increasing
monotonically is an event of probability 0. Therefore, condi-
tion (12d) is satisfied.
Numerical results. We simulated a SISO frequency selective
IC under the following setting: the number of users is either
five or twenty; equal power budget Pi = P and white Gaussian
noise variance σ2

i = σ2 are assumed for all users; the SNR
of each user snr = P/σ2 is set to 10dB; the instantaneous
parallel subchannels ht , (htij,n)i,j,n are generated accord-
ing to ht = h + 4ht, where h (generated by MATLAB
command randn) is fixed while 4ht is generated at each
t using δ · randn, with δ = 0.2 being the noise level. We
simulated the following algorithms: i) the proposed stochastic
best-response pricing algorithm (with τi = 10−8 for all i,
γ1 = ρ0 = ρ1 = 1, ρt = 2/(t+ 2)0.6, and γt = 2/(t+ 2)0.61

for t ≥ 2); ii) the stochastic conditional gradient method
[9] (with γ1 = ρ0 = ρ1 = 1, ρt = 1/(t + 2)0.9, and
γt = 1/(t + 2)0.91 for t ≥ 2); iii) and the stochastic
gradient projection method [26] (with γ1 = 1 and γt =
γt−1(1 − 10−3γt−1) for t ≥ 2). Note that the stepsizes are
tuned such that all algorithms can achieve their best empirical
convergence speed. We plot two merit functions, namely: i) the
ergodic sum-rate, defined as Eh[

∑N
n=1

∑I
i=1 ri(p

t,h)] (with
the expected value estimated by the sample mean of 1000
independent realizations); and ii) the “achievable” sum-rate,
defined as1

t

∑t
m=1

∑N
n=1

∑I
i=1 ri(p

m,hm), which represents

the sum-rate that is actually achieved in practice (it is the time
average of the instantaneous (random) sum-rate).

In Figure 1, we plot the two above merit functions versus
the iteration index t achieved using the different algorithms.
Our experiment show that for “small” systems (e.g., five
active users), all algorithms perform quite well (for both
the merit functions), with a gain in convergence speed for
the proposed scheme. However, when the number of users
increases increased (e.g., from 5 to 20), all other (gradient-
like) algorithms suffer from very slow convergence. Quite
interestingly, the proposed scheme seems also quite scalable:
the convergence speed is not notably affected by the number of
users, which makes it applicable to more realistic scenarios.
The faster convergence of proposed stochastic best-response
pricing algorithm comes from a better exploitation of partial
convexity in the problem than what more classical gradient
algorithms do, which validates the main idea of this paper.
B. Sum-rate maximization over MIMO ICs

Now we customize Algorithm 1 to solve the sum-rate
maximization problem over MIMO ICs (3). Defining

ri(Qi,Q−i,H) , log det
(
I + HiiQiH

H
iiRi(Q−i,H)−1

)
and following a similar approach as in the SISO case, the
best-response of each user i becomes [cf. (16)]:

Q̂i(Q
t,Ht) = arg max

Qi∈Qi

{
ρtri(Qi,Q

t
−i,H

t) + ρt
〈
Qi −Qt

i,Π
t
i

〉
+(1− ρt)

〈
Qi −Qt

i,F
t−1
i

〉
− τi

∥∥Qi −Qt
i

∥∥2}, (20a)

where
〈
A,B

〉
, tr(AHB); Πi (Q,H) is given by

Πi (Q,H) =
∑
j 6=i

∇Q∗i
rj(Q,H) =

∑
j 6=i

HH
ji R̃j (Q−j ,H) Hji,

(20b)
where rj(Q,H) = log det(I + HjjQjH

H
jjRj(Q−i,H)−1)

and R̃j (Q−j ,H) ,
(
Rj (Q−j ,H) + HjjQjH

H
jj

)−1 −
Rj (Q−j ,H)

−1. Then Fti is updated by (6d), which becomes

Fti = (1− ρt) Ft−1i + ρt
∑I
j=1∇Q∗i

rj(Q
t,Ht)

= (1− ρt) Ft−1i + ρtΠi(Q
t,Ht)

+ ρt(Ht
ii)
H
(
Rt
i + Ht

iiQ
t
i(H

t
ii)
H
)−1

Ht
ii. (20c)
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We can then apply Algorithm 1 based on the best-response
Q̂(Qt,Ht) = (Q̂i(Q

t,Ht))Ii=1 whose convergence is guar-
anteed if the stepsizes are properly chosen [cf. Theorem 1].

Differently from the SISO case, the best-response in (20a)
does not have a closed-form solution. A standard option to
compute Q̂(Qt,Ht) is using standard solvers for strongly
convex optimization problems. By exploiting the structure of
problem (20), we propose next an efficient iterative algorithm
converging to Q̂(Qt,Ht), wherein the subproblems solved at
each step have a closed-form solution.
Second-order dual method. To begin with, for notational
simplicity, we rewrite (20a) in the following general form:

maximize
X

ρ log det(R + HXHH) + 〈A,X〉 − τ
∥∥X− X̄

∥∥2
subject to X ∈ Q, (21)

where R � 0, A = AH , X̄ = X̄H and Q is defined in
(3). Let HHR−1H , UDUH be the eigenvalue/eigenvector
decomposition of HHR−1H, where U is unitary and D
is diagonal with the diagonal entries arranged in decreasing
order. It is not difficult to verify that (21) is equivalent to the
following problem:

maximize
X̃∈Q

ρ log det(I+X̃D)+
〈
Ã, X̃

〉
−τ
∥∥X̃−X̌

∥∥2, (22)

where X̃ , UHXU, Ã , UHAU, and X̌ = UHX̄U. We
now partition D � 0 in two blocks, its positive definite and
zero parts, and X̃ accordingly:

D =

[
D1 0
0 0

]
and X̃ =

[
X̃11 X̃12

X̃21 X̃22

]
where D1 � 0, and X̃11 and D1 have the same dimensions.
Problem (22) can be then rewritten as:

maximize
X̃∈Q

ρ log det(I + X̃11D1) +
〈
Ã, X̃

〉
− τ
∥∥X̃− X̌

∥∥2,
(23)

Note that, since X̃ ∈ Q, by definition X̃11 must belong to
Q as well. Using this fact and introducing the slack variable
Y = X̃11, (23) is equivalent to

maximize
X̃,Y

ρ log det(I + YD1) +
〈
Ã, X̃

〉
− τ
∥∥X̃− X̌

∥∥2
subject to X̃ ∈ Q, Y = X̃11, Y ∈ Q. (24)

Now we solve (24) via dual decomposition (note that there
is zero duality gap). The (partial) Lagrangian function of (24)
is: denoting by Z the matrix of multipliers associated to the
linear constraints Y = X̃11,

L(X̃,Y,Z) = ρ log det(I + YD1) +
〈
Ã, X̃

〉
− τ
∥∥X̃− X̌

∥∥2 +
〈
Z,Y − X̃11

〉
.

The dual problem is then

minimize
Z

d(Z) = L(X̃(Z),Y(Z),Z),

with

X̃(Z) = arg max
X̃∈Q

− τ
∥∥X̃− X̌

∥∥2 − 〈Z, X̃11

〉
, (25)

Y(Z) = arg max
Y∈Q

ρ log det(I + YD1) + 〈Z,Y〉 . (26)

Problem (25) is quadratic and has a closed-form solution
(see Lemma 2 below). Similarly, if Z ≺ 0, (26) can be solved
in closed-form, up to a Lagrange multiplier which can be
found by bisection; see, e.g., [29, Table I]. In our setting,
however, Z in (26) is not necessarily negative definite. Never-
theless, the next lemma provides a closed form expression of
Y(Z) [and X̃(Z)].

Lemma 2. Given (25) and (26) in the setting above, the
following hold:

i) X̃(Z) in (25) is given by

X̃(Z) =

[
X̌− 1

2τ

(
µ?I +

[
Z 0
0 0

])]+
, (27)

where [X]+ denotes the projection of X onto the
cone of positive semidefinite matrices, and µ? is the
multiplier such that 0 ≤ µ? ⊥ tr(X̃(Z)) − P ≤ 0,
which can be found by bisection;

ii) Y(Z) in (26) is unique and is given by

Y(Z) = V [ρ I−Σ−1]+ VH , (28)

where (V,Σ) is the generalized eigenvalue decom-
position of (D1,−Z+µ?I), and µ? is the multiplier
such that 0 ≤ µ? ⊥ tr(Y(Z)) − P ≤ 0; µ? can be
found by bisection over [µ, µ], with µ , [λmax(Z)]+

and µ , [λmax(D1) + λmax(Z)/ρ]+.

Proof: See Appendix B.

Since (X̃(Z),Y(Z)) is unique, d(Z) is differentiable , with
conjugate gradient [22]

∇Z∗d(Z) = Y(Z)− X̃11(Z).

One can then solve the dual problem using standard (proximal)
gradient-based methods; see, e.g., [34]. As a matter of fact,
d(Z) is twice continuously differentiable, whose augmented
Hessian matrix [22] is given by [34, Sec. 4.2.4]:

∇2
ZZ∗d(Z) = − [I − I]

H ·[
bdiag(∇2

YY∗L(X̃,Y,Z),∇2
X̃11X̃∗11

L(X̃,Y,Z))
]−1
·

[I − I]
∣∣
X̃=X̃(Z),Y=Y(Z)

,

with

∇2
YY∗L(X̃,Y,Z) = −ρ2 · (D1/2

1 (I + D
1/2
1 YD

1/2
1 )−1D

1/2
1 )T

⊗ (D
1/2
1 (I + D

1/2
1 YD

1/2
1 )−1D

1/2
1 ),

and ∇2
X̃11X̃∗11

L(X̃Y,Z) = −τI. Since D1 � 0, it is easy
to verify that ∇2

ZZ∗d(Z) � 0 and the following second-order
Newton’s method to update the dual variable Z is well-defined:

vec(Zt+1) = vec(Zt)− (∇2
ZZ∗d(Zt))−1vec(∇d(Zt)).

The convergence speed of the Newton’s methods is typically
very fast, and, in particular, superlinear convergence rate can
be expected when Zt is close to Z? [34, Prop. 1.4.1]. �

As a final remark on efficient solution methods computing
Q̂i(Q

t,Ht), note that one can also apply the proximal condi-
tional gradient method as introduced in (14), which is based
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Figure 2. Sum-rate versus iteration in a 50-user MIMO IC

on a fully linearization of the social function plus a proximal
regularization term:

Q̂i(Q
t,Ht) = arg max

Qi∈Q

{〈
Qi −Qt

i,F
t
i

〉
− τi

∥∥Qi −Qt
i

∥∥2}
=

[
Qt
i +

1

2τi
(Fti − µ?I)

]+
, (29)

where µ? is the Lagrange multiplier that can be found effi-
ciently by bisection method. Note that (29) differs from more
traditional conditional stochastic gradient methods [9] by the
presence of the proximal regularization, thanks to which one
can solve (29) in closed form.
Practical implementations. The proposed algorithm is fairly
distributed: once the pricing matrix Πi is given, to compute
the best-response, each user only needs to locally estimate
the covariance matrix of the interference plus noise. Note that
both the computation of Q̂i(Q,H) and the update of Fi can
be implemented locally by each user. The estimation of the
pricing matrix Πi requires however some signaling among
nearby receivers. Quite interestingly, the pricing expression
and thus the resulting signaling overhead necessary to compute
it coincide with [29] (where a sequential algorithm is proposed
for the deterministic maximization of the sum-rate over MIMO
ICs) and the stochastic gradient projection method in [26]. We
remark that the signaling to compute (20b) is lower than in
[18, 36], wherein signaling exchange is required twice (one
in the computation of Ui and another in that of Ai; see
[36, Algorithm 1] for more details) in a single iteration to
transmit among users the auxiliary variables which are of same
dimensions as Πi.
Numerical Results. We considered the same scenario as in
the SISO case (cf. Sec. IV-A) with the following differences:
i) there are 50 users; ii) the channels are matrices generated
according to Ht = H+4Ht, where H is given while 4Ht is
realization dependent and generated by δ ·randn, with noise
level δ = 0.2; and iii) the number of transmit and receive
antennas is four. We simulate the following algorithms: i) the
proposed stochastic best-response pricing algorithm (20) (with
τi = 10−8 for all i; γ1 = ρ0 = ρ1 = 1 and ρt = 2/(t+ 2)0.6

and γt = 2/(t+ 2)0.61 for t ≥ 2); ii) the proposed stochastic
proximal gradient method (29) with τ = 0.01 and same
stepsize as stochastic best-response pricing algorithm; iii) the
stochastic conditional gradient method [9] (with γ1 = ρ0 =
ρ1 = 1 and ρt = 1/(t + 2)0.9 and γt = 1/(t + 2)0.91

for t ≥ 2); and iv) the stochastic weighted minimum mean-
square-error (SWMMSE) method [36]. The best-response of
the algorithm in i) is computed using Lemma 2. We observed
convergence of the inner loop solving (25)-(26) in a very
few iterations. Similarly to the SISO ICs case, we consider
both ergodic sum-rate and achievable sum-rate. In Figure 2
we plot both objective functions versus the iteration index.
It is clear from the figures that the proposed best-response
pricing and proximal gradient algorithms outperform current
schemes in terms of both convergence speed and achievable
(ergodic or instantaneous) sum-rate. Note also that the best-
response pricing algorithm is very scalable compared with
the other algorithms. Finally, it is interesting to note that the
proposed stochastic proximal gradient algorithm outperforms
the conditional stochastic gradient method in terms of both
convergence speed and iteration complexity. This is mainly
due to the presence of the proximal regularization.

C. Sum-rate maximization over MIMO MACs

We consider now the sum-rate maximization problem over
MIMO MACs, as defined in (4). Define

r(H,Q) , log det
(
RN +

∑I
i=1HiQiH

H
i

)
.

A natural choice for the best-response of each user i is [cf.
(15)]:

Q̂i(Q
t,Ht) = arg max

Qi∈Qi

{
ρt r(Ht,Qi,Q

t
−i)

+(1− ρt)
〈
Qi −Qt

i,F
t−1
i

〉
− τi

∥∥Qi −Qt
i

∥∥2}, (30)

and Fti is updated as Fti = (1− ρt)Ft−1i + ρt∇Q∗i
r(Ht,Qt)

while ∇Q∗i
r(H,Q) = HH

i (RN +
∑I
i=1 HiQiH

H
i )−1Hi.

Note that since the instantaneous sum-rate function
log det(RN +

∑I
i=1 HiQiH

H) is jointly concave in Qi for
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Figure 3. Sum-rate versus iteration in MIMO MAC

any H, the ergodic sum-rate function is concave in Qi’s, and
thus Algorithm 1 will converge (in the sense of Theorem
1) to the global optimal solution of (4). To the best of our
knowledge, this is the first example of stochastic approxima-
tion algorithm based on best-response dynamics rather than
gradient responses.
Numerical results. We compare the proposed best-response
method (30) (whose solution is computed using Method #2
in Sec. IV-B) with the stochastic conditional gradient method
[9], and the stochastic gradient projection method [8]. System
parameters (including the stepsize rules) are set as for the
MIMO IC example in Sec. IV-B. In Figure 3 we plot both
the ergodic sum-rate and the achievable sum-rate versus the
iteration index. The figure clearly shows that Algorithm 1
outperforms the conditional gradient method and the gradient
projection method in terms of convergence speed, and the per-
formance gap is increasing as the number of users increases.
This is because the proposed algorithm is a best-response type
scheme, which thus explores the concavity of each users’ rate
function better than what gradient methods do. Note also the
good scalability of the proposed best-response method.

D. Distributed deterministic algorithms with errors
The developed framework can be useful in the context of

deterministic optimization as well to robustify best-response-
based algorithms in the presence of noisy estimates of system
parameters. Consider the deterministic optimization problem
introduced in (5). The main iterate of the deterministic coun-
terpart of Algorithm 1 is still given by (7) but with each x̂i(x

t)
defined as [15]

x̂i(x
t) = arg min

xi∈Xi

{∑
j∈Cifi(xi,x

t
−i) +

〈
xi − xti,πi(x

t)
〉

+τi ‖xi − xti‖
2
,

}
,

(31)
where πi(x) =

∑
j∈Ci ∇ifj(x). In many applications (see,

e.g., [24, 25, 26]), however, only a noisy estimate, denoted
by π̃i(x), is available instead of πi(x). A heuristic is then
to replace in (31) the exact πi(x) with its noisy estimate
π̃i(x). The limitation of this approach, albeit natural, is that
convergence of the resulting scheme is in jeopardy.

If π̃i(x) is unbiased, i.e., E [π̃i(x
t)|F t] = πi(x

t) [24, 25],
capitalizing on the proposed framework, we can readily deal

with estimation errors while guaranteeing convergence. In
particular, it is sufficient to modify (31) as follows:

x̃i(x
t) = arg min

xi∈Xi

{∑
j∈Cifj(xi,x

t
−i) + ρt

〈
xi − xti, π̃i(x

t)
〉

+(1− ρt)
〈
xi − xti, f

t−1
i

〉
+ τi

∥∥xi − xti
∥∥2}, (32)

where f ti is updated according to f ti = (1−ρt)f t−1i +ρtπ̃i(x
t).

Algorithm 1 based on the best-response (32) is then guaranteed
to converge to a stationary solution of (5), in the sense
specified by Theorem 1.

As a case study, we consider next the maximization of the
deterministic sum-rate over MIMO ICs in the presence of
pricing estimation errors:

maximize
Q

∑I
i=1 log det(I + HiiQiH

H
iiRi(Q−i)

−1)

subject to Qi � 0, tr(Qi) ≤ Pi, i = 1, . . . , I. (33)

Then (32) becomes:

Q̂i(Q
t) = arg max

Qi∈Qi

{
log det

(
Rt
i + Ht

iiQi(H
t
ii)
H
)

+
〈
Qi −Qt

i, ρ
tΠ̃

t

i + (1− ρt)Ft−1i

〉
− τi

∥∥Qi −Qt
i

∥∥2},
(34)

where Π̃
t

i is a noisy estimate of Πi(Q
t,H) given by (20b)2

and Fti is updated according to Fti = ρtΠ̃
t

i + (1 − ρt)Ft−1i .

Given Q̂i(Q
t), the main iterate of the algorithm becomes

Qt+1
i = Qt

i + γt+1
(
Q̂i(Q

t)−Qt
i

)
. Convergence w.p.1 to

a stationary point of the deterministic optimization problem
(33) is guaranteed by Theorem 1. Note that if the channel
matrices {Hii} are full column-rank, one can also set in (34)
all τi = 0, and compute (34) in closed form (cf. Lemma 2).
Numerical results. We consider the maximization of the
deterministic sum-rate (33) over a 5-user MIMO IC. The other
system parameters (including the stepsize rules) are set as
in the numerical example in Sec. IV-B. The noisy estimate
Π̃i of the nominal price matrix Πi [defined in (20b)] is
Π̃
t

i = Πi + ∆Πt
i, where ∆Πt

i is firstly generated as ∆Ht in

2Πi(Q,H) is always negative definite by definition [29], but Π̃
t
i may not

be so. However, it is reasonable to assume Π̃
t
i to be Hermitian.
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Figure 4. Maximization of deterministic sum-rate over MIMO IC under
noisy parameter estimation: sum-rate versus iteration.

Sec. IV-B and then only its Hermitian part is kept; the noise
level δ is set to 0.05. We compare the following algorithms: i)
the proposed robust pricing method−Algorithm 1 based on the
best-response defined in (34); and ii) the plain pricing method
as proposed in [15] [cf. (31)]. We also include as a benchmark
the sum-rate achieved by the plain pricing method (31) when
there is no estimation noise (i.e., perfect πi(x) is available). In
Figure 4 we plot the deterministic sum-rate in (33) versus the
iteration index t. As expected, Figure 4 shows that the plain
pricing method [15] is not robust to pricing estimation errors,
whereas the proposed robustification preforms quite well. For
instance, the rate achievable by the proposed method is about
50% larger than the one of [15], and is observed to reach the
benchmark value (achieved by the plain pricing method when
there is no estimation noise). This is due to the fact that the
proposed robustification filters out the estimation noise. Note
that the limit point generated by the proposed scheme is a
stationary solution of the deterministic problem (33).

V. CONCLUSIONS

In this paper, we have proposed a novel best-response-based
algorithmic framework converging to stationary solutions of
general stochastic nonconvex optimization problems. The pro-
posed novel decomposition enables all users to update their
optimization variables in parallel by solving a sequence of
strongly convex subproblems; which makes the algorithm very
appealing for the distributed design of several multi-agent sys-
tems. We have then customized the general framework to solve
special classes of problems as well as specific applications,
including the stochastic maximization of the sum-rate over
frequency-selective ICs, MIMO ICs and MACs. Extensive
experiments have provided a solid evidence of the superiority
in terms of both achievable sum-rate and practical convergence
of the proposed schemes with respect to to state-of-the-art
stochastic-based algorithms.

APPENDIX

A. Proof of Theorem 1

We first introduce the following two preliminary results.

Lemma 3. Given problem (1) under Assumptions (a)-(c),
suppose that the stepsizes {γt} and {ρt} are chosen according
to (12). Let {xt} be the sequence generated by Algorithm 1.
Then, the following holds

lim
t→∞

∥∥f t −∇U(xt)
∥∥ = 0, w.p.1.

Proof: This lemma is a consequence of [10, Lemma 1]. To
see this, we just need to verify that all the technical conditions
therein are satisfied by the problem at hand. Specifically,
Condition (a) of [10, Lemma 1] is satisfied because Xi’s are
closed and bounded in view of Assumption (a). Condition (b)
of [10, Lemma 1] is exactly Assumption (c). Conditions (c)-
(d) come from the stepsize rules i)-ii) in (12) of Theorem 1.
Condition (e) of [10, Lemma 1] comes from the Lipschitz
property of ∇U from Assumption (b) and stepsize rule iii) in
(12) of Theorem 1.

Lemma 4. Given problem (1) under Assumptions (a)-(c),
suppose that the stepsizes {γt} and {ρt} are chosen according
to (12). Let {xt} be the sequence generated by Algorithm 1.
Then, there exists a constant L̂ such that∥∥x̂(xt1 , ξt1)− x̂(xt2 , ξt2)

∥∥ ≤ L̂∥∥xt1 − xt2
∥∥+ e(t1, t2),

and limt1,t2→∞ e(t1, t2) = 0 w.p.1.

Proof: We assume w.l.o.g. that t2 > t1; for notational
simplicity, we also define x̂ti , x̂i(x

t, ξt), for t = t1 and
t = t2. It follows from the first-order optimality condition
that [22] 〈

xi − x̂t1i ,∇if̂i(x̂
t1
i ; xt1 , ξt1)

〉
≥ 0, (35a)〈

xi − x̂t2i ,∇if̂i(x̂
t2
i ; xt2 , ξt2)

〉
≥ 0. (35b)

Setting xi = x̂i(x
t2 , ξt2) in (35a) and xi = x̂i(x

t1 , ξt1) in
(35b), and adding the two inequalities, we have

0 ≥
〈
x̂t1i − x̂t2i ,∇if̂i(x̂

t1
i ; xt1 , ξt1)−∇if̂i(x̂t2i ; xt2 , ξt2)

〉
=
〈
x̂t1i − x̂t2i ,∇if̂i(x̂

t1
i ; xt1 , ξt1)−∇if̂i(x̂t1i ; xt2 , ξt2)

〉
+
〈
x̂t1i − x̂t2i ,∇if̂i(x̂

t1
i ; xt2 , ξt2)−∇if̂i(x̂t2i ; xt2 , ξt2)

〉
.

(36)

The first term in (36) can be lower bounded as follows:〈
x̂t1i − x̂t2i ,∇if̂i(x̂

t1
i ; xt1 , ξt1)−∇if̂i(x̂t1i ; xt2 , ξt2)

〉
= ρt1

∑
j∈Ct1i

〈
x̂t1i − x̂t2i ,

∇ifj(x̂t1i ,x
t1
−i, ξ

t1)−∇ifj(xt1i ,x
t1
−i, ξ

t1)
〉

− ρt2
∑
j∈Ct2i

〈
x̂t1i − x̂t2i ,

∇ifj(x̂t1i ,x
t2
−i, ξ

t2)−∇ifj(xt2i ,x
t2
−i, ξ

t2)
〉

+
〈
x̂t1i − x̂t2i , f

t1
i − f t2i

〉
− τi

〈
x̂t1i − x̂t2i ,x

t1
i − xt2i

〉
(37a)

where in (37a) we used (9). Invoking the Lipschitz continuity
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of ∇fj(•,xt−i, ξ
t), we can get a lower bound for (37a):〈

x̂t1i − x̂t2i ,∇if̂i(x̂
t1
i ; xt1 , ξt1)−∇if̂i(x̂t1i ; xt2 , ξt2)

〉
≥ − ρt1

∑
j∈Ct1i

∥∥x̂t1i − x̂t2i
∥∥·∥∥∇ifj(x̂t1i ,xt1−i, ξt1)−∇ifj(xt1i ,x

t1
−i, ξ

t1)
∥∥

− ρt2
∑
j∈Ct2i

∥∥x̂t1i − x̂t2i
∥∥·∥∥∇ifj(x̂t1i ,xt2−i, ξt2)−∇ifj(xt2i ,x

t2
−i, ξ

t2)
∥∥

+
〈
x̂t1i − x̂t2i , f

t1
i −∇iU(xt1)− f t2i +∇iU(xt2)

〉
+
〈
x̂t1i − x̂t2i ,∇iU(xt1)−∇iU(xt2)

〉
− τi

〈
x̂t1i − x̂t2i ,x

t1
i − xt2i

〉
, (37b)

≥ − ρt1
(∑

j∈IfL∇fj(ξt1 )

)∥∥x̂t1i − x̂t2i
∥∥ · ∥∥x̂t1i − xt1i

∥∥
− ρt2

(∑
j∈IfL∇fj(ξt2 )

)∥∥x̂t1i − x̂t2i
∥∥ · ∥∥x̂t1i − xt2

∥∥
−
∥∥x̂t1i − x̂t2i

∥∥(εt1 + εt2)

− (L∇U + τmax)
∥∥x̂t1i − x̂t2i

∥∥∥∥xt1 − xt2
∥∥ (37c)

≥ − ρt1
(∑

j∈IfL∇fj(ξt1 )

)
Cx
∥∥x̂t1i − x̂t2i

∥∥
− ρt2

(∑
j∈IfL∇fj(ξt2 )

)
Cx
∥∥x̂t1i − x̂t2i

∥∥
−
∥∥x̂t1i − x̂t2i

∥∥(εt1 + εt2)

− (L∇U + τmax)
∥∥x̂t1i − x̂t2i

∥∥∥∥xt1 − xt2
∥∥, (37d)

where (37c) comes from the Lipschitz continuity of
∇fj(•,xt−i, ξ

t), with εt , ‖f t −∇U(xt)‖ and τmax =
max1≤i≤I τi < ∞, and we used the boundedness of the
constraint set X (

∥∥x − y
∥∥ ≤ Cx for some Cx < ∞ and

all x,y ∈ X ) and the Lipschitz continuity of ∇U(•) in (37d).
The second term in (36) can be bounded as:〈
x̂t1i − x̂t2i ,∇if̂(x̂t1i ; xt2 , ξt2)−∇if̂(x̂t2i ; xt2 , ξt2)

〉
= ρt2

∑
j∈Ct2i

〈
x̂t1i − x̂t2i ,∇ifj(x̂

t1
i ,x

t2
−i, ξ

t2)
〉

− ρt2
∑
j∈Ct2i

〈
x̂t1i − x̂t2i ,∇ifj(x̂

t2
i ,x

t2
−i, ξ

t2)
〉

+τi
∥∥x̂t1i −̂xt2i ∥∥2 ≥ τmin

∥∥x̂t1i − x̂t2i
∥∥2,

(38)

where the inequality follows from the definition of τmin and
the (uniformly) convexity of the functions fj(•,xt−i, ξ

t).
Combining the inequalities (36), (37d) and (38), we have∥∥x̂t1i − x̂t2i

∥∥ ≤ (L∇U + τmax)τ−1min

∥∥xt1 − xt2
∥∥

+ τ−1minCxρ
t1
(∑

j∈IfL∇fj(ξt1 )

)
+ τ−1minCxρ

t2
(∑

j∈IfL∇fj(ξt2 )

)
+ τ−1min(εt1 + εt2),

which leads to the desired (asymptotic) Lipschitz property:∥∥x̂t1 − x̂t2
∥∥ ≤ L̂∥∥xt1 − xt2

∥∥+ e(t1, t2),

with L̂ , I τ−1min(L∇U + τmax) and

e(t1, t2) , I τ−1min

(
(εt1 + εt2)+

+Cx
(
ρt1
∑
j∈If L∇fj(ξt1 ) + ρt2

∑
j∈If L∇fj(ξt2 )

))
.

In view of Lemma 3 and (12d), it is easy to check that
limt1→∞,t2→∞ e(t1, t2) = 0 w.p.1.

Proof of Theorem 1. Invoking the first-order optimality
conditions of (6), we have

ρt
〈
xti − x̂ti,

∑
j∈Cti
∇ifj(x̂ti,xt−i, ξ

t) + πi(x
t, ξt)

〉
+ (1− ρt)

〈
xti − x̂ti, f

t−1
i

〉
+ τi

〈
xti − x̂ti, x̂

t
i − xti

〉
= ρt

∑
j∈Cti

〈
xti − x̂ti,∇ifj(x̂ti,xt−i, ξ

t)−∇ifj(xti,xt−i, ξ
t)
〉

+
〈
xti − x̂ti, f

t
i

〉
− τi

∥∥x̂ti − xti
∥∥2 ≥ 0,

which together with the convexity of
∑
j∈Cti

fj(•,xt−i, ξ
t)

leads to 〈
x̂ti − xti, f

t
i

〉
≤ −τmin

∥∥x̂ti − xti
∥∥2. (39)

It follows from the descent lemma on U that

U(xt+1) ≤ U(xt) + γt+1
〈
x̂t − xt,∇U(xt)

〉
+ L∇U (γt+1)2

∥∥x̂t − xt
∥∥2

= U(xt) + γt+1
〈
x̂t − xt,∇U(xt)− f t + f t

〉
+ L∇U (γt+1)2

∥∥x̂t − xt
∥∥2

≤ U(xt)− γt+1(τmin − L∇Uγt+1)
∥∥x̂t − xt

∥∥2
+ γt+1

∥∥x̂t − xt
∥∥∥∥∇U(xt)− f t

∥∥, (40)

where in the last inequality we used (39). Let us show by
contradiction that lim inft→∞

∥∥x̂t − xt
∥∥ = 0 w.p.1. Suppose

lim inft→∞
∥∥x̂t − xt

∥∥ ≥ χ > 0 with a positive probability.
Then we can find a realization such that at the same time∥∥x̂t−xt

∥∥ ≥ χ > 0 for all t and limt→∞
∥∥∇U(xt)− f t

∥∥ = 0;
we focus next on such a realization. Using

∥∥x̂t−xt
∥∥ ≥ χ > 0,

the inequality (40) is equivalent to

U(xt+1)− U(xt) ≤

−γt+1
(
τmin − L∇Uγt+1 − 1

χ ‖∇U(xt)− f t‖
)∥∥x̂t − xt

∥∥2.
(41)

Since limt→∞
∥∥∇U(xt)−f t

∥∥ = 0, there exists a t0 sufficiently
large such that

τmin − L∇Uγt+1 − 1

χ

∥∥∇U(xt)− f t
∥∥ ≥ τ̄ > 0, ∀ t ≥ t0.

(42)
Therefore, it follows from (41) and (42) that

U(xt)− U(xt0) ≤ −τ̄χ2∑t
n=t0

γn+1, (43)

which, in view of
∑∞
n=t0

γn+1 = ∞, contradicts
the boundedness of {U(xt)}. Therefore it must be
lim inft→∞ ‖x̂t − xt‖ = 0 w.p.1.

We prove now that lim supt→∞ ‖x̂t − xt‖ = 0 w.p.1.
Assume lim supt→∞ ‖x̂t − xt‖ > 0 with some positive
probability. We focus next on a realization along with
lim supt→∞ ‖x̂t − xt‖ > 0, limt→∞

∥∥∇U(xt) − f t
∥∥ = 0,

lim inft→∞
∥∥x̂t − xt

∥∥ = 0, and limti,t2→∞ e(t1, t2) = 0,
where e(t1, t2) is defined in Lemma 4. It follows from
lim supt→∞ ‖x̂t − xt‖ > 0 and lim inft→∞

∥∥x̂t − xt
∥∥ = 0

that there exists a δ > 0 such that ‖4xt‖ ≥ 2δ (with
4xt , x̂t−xt) for infinitely many t and also ‖4xt‖ < δ for
infinitely many t. Therefore, one can always find an infinite
set of indexes, say T , having the following properties: for any
t ∈ T , there exists an integer it > t such that

‖4xt‖ < δ,
∥∥4xit

∥∥ > 2δ,

δ ≤ ‖4xn‖ ≤ 2δ, t < n < it.
(44)
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Given the above bounds, the following holds: for all t ∈ T ,

δ ≤
∥∥4xit

∥∥− ∥∥4xt
∥∥

≤
∥∥4xit −4xt

∥∥ =
∥∥(x̂it − xit)− (x̂t − xt)

∥∥
≤
∥∥x̂it − x̂t

∥∥+
∥∥xit − xt

∥∥
≤ (1 + L̂)

∥∥xit − xt
∥∥+ e(it, t)

≤ (1 + L̂)
∑it−1
n=t γ

n+1 ‖4xn‖+ e(it, t)

≤ 2δ(1 + L̂)
∑it−1
n=t γ

n+1 + e(it, t), (45)

implying that

lim inf
T 3t→∞

∑it−1
n=t γ

n+1 ≥ δ̄1 ,
1

2(1 + L̂)
> 0. (46)

Proceeding as in (45), we also have: for all t ∈ T ,∥∥4xt+1
∥∥− ∥∥4xt

∥∥ ≤ ∥∥4xt+1 −4xt
∥∥

≤ (1 + L̂)γt+1
∥∥4xt

∥∥+ e(t, t+ 1),

which leads to

(1+(1+ L̂)γt+1)
∥∥4xt

∥∥+e(t, t+1) ≥
∥∥4xt+1

∥∥ ≥ δ, (47)

where the second inequality follows from (44). It follows from
(47) that there exists a δ̄2 > 0 such that for sufficiently large
t ∈ T , ∥∥4xt

∥∥ ≥ δ − e(t, t+ 1)

1 + (1 + L̂)γt+1
≥ δ̄2 > 0. (48)

Here after we assume w.l.o.g. that (48) holds for all t ∈ T (in
fact one can always restrict {xt}t∈T to a proper subsequence).

We show now that (46) is in contradiction with the conver-
gence of {U(xt)}. Invoking (40), we have: for all t ∈ T ,

U(xt+1)− U(xt)

≤ −γt+1
(
τmin − L∇Uγt+1

) ∥∥x̂t − xt
∥∥2

+ γt+1δ
∥∥∇U(xt)− f t

∥∥
≤ −γt+1

(
τmin − L∇Uγt+1 −

∥∥∇U(xt)− f t
∥∥

δ

)
·
∥∥x̂t − xt

∥∥2 + γt+1δ
∥∥∇U(xt)− f t

∥∥2, (49)

and for t < n < it,

U(xn+1)− U(xn)

≤ −γn+1

(
τmin − L∇Uγn+1 −

∥∥∇U(xn)− fn
∥∥∥∥x̂n − xn

∥∥
)

·
∥∥x̂n − xn

∥∥2
≤ −γn+1

(
τmin − L∇Uγn+1 −

∥∥∇U(xn)− fn
∥∥

δ

)
·
∥∥x̂n − xn

∥∥2, (50)

where the last inequality follows from (44). Adding (49) and
(50) over n = t+1, . . . , it−1 and, for t ∈ T sufficiently large
(so that τmin−L∇Uγt+1− δ−1

∥∥∇U(xn)− fn
∥∥ ≥ τ̂ > 0 and

∥∥∇U(xt)− f t
∥∥ < τ̂ δ̄22/δ), we have

U(xit)− U(xt)

(a)

≤ −τ̂
∑it−1
n=t γ

n+1
∥∥x̂n − xn

∥∥2 + γt+1δ
∥∥∇U(xt)− f t

∥∥
(b)

≤ −τ̂ δ̄22
∑it−1
n=t+1γ

n+1 − γt+1
(
τ̂ δ̄22 − δ

∥∥∇U(xt)− f t
∥∥)

(c)

≤ −τ̂ δ̄22
∑it−1
n=t+1γ

n+1, (51)

where (a) follows from τmin − L∇Uγt+1 − δ−1
∥∥∇U(xn) −

fn
∥∥ ≥ τ̂ > 0; (b) is due to (48); and in (c) we used∥∥∇U(xt)−f t

∥∥ < τ̂ δ̄22/δ. Since {U(xt)} converges, it must be
lim inf
T 3t→∞

∑it−1
n=t+1γ

n+1 = 0, which contradicts (46). Therefore,

it must be lim supt→∞
∥∥x̂t − xt

∥∥ = 0 w.p.1.
Finally, let us prove that every limit point of the sequence

{xt} is a stationary solution of (1). Let x∞ be the limit point
of the convergent subsequence {xt}t∈T . Taking the limit of
(35) over the index set T , we have

lim
T 3t→∞

〈
xi − x̂ti,∇if̂i

(
x̂ti; x

t, ξt
)〉

= lim
T 3t→∞

〈
xi − x̂ti,

f ti + τi
(
x̂ti − xti

)
+ρt

∑
j∈Cti

(
∇ifj(x̂ti,xt−i, ξ

t)−∇ifj(xti,xt−i, ξ
t)
)〉

=
〈
xi − x∞i ,∇U(x∞i )

〉
≥ 0, ∀xi ∈ Xi, (52)

where the last equality follows from: i) limt→∞
∥∥∇U(xt) −

f t
∥∥ = 0 (cf. Lemma 3); ii) lim t→∞

∥∥x̂ti − xt
∥∥ = 0; and iii)

the following∥∥ρt∑j∈Cti
(∇ifj(x̂ti,xt−i, ξ

t)−∇ifj(xti,xt−i, ξ
t))
∥∥

≤ Cxρt
∑
j∈IfL∇fj(ξt) −→

t→∞
0, (53)

where (53) follows from the Lipschitz continuity of∇fj(x, ξ),
the fact ‖x̂ti − xti‖ ≤ Cx, and (12d).

Adding (52) over i = 1, . . . , I , we get the desired first-order
optimality condition:

〈
x−x∞,∇U(x∞)

〉
≥ 0, for all x ∈ X .

Therefore x∞ is a stationary point of (1). �

B. Proof of Lemma 2

We prove only (28). Since (26) is a convex optimization
problem and Q has a nonempty interior, strong duality holds
for (26) [37]. The dual function of (26) is

d(µ) = max
Y�0
{ρ log det(I+YD1)+

〈
Y,Z−µI

〉
}+µP, (54)

where µ ∈ {µ : µ � 0, d(µ) < +∞}. Denote by Y?(µ)
the optimal solution of the maximization problem in (54), for
any given feasible µ. It is easy to see that d(µ) = +∞ if
Z− µI � 0, so µ is feasible if and only if Z− µI ≺ 0, i.e.,

µ

{
≥ µ = [λmax(Z)]+ = 0, if Z ≺ 0,

> µ = [λmax(Z)]+, otherwise,

and Y?(µ) is [29, Prop. 1]

Y?(µ) = V(µ)[ρI−D(µ)−1]+V(µ)H ,
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where (V(µ),Σ(µ)) is the generalized eigenvalue decom-
position of (D1,−Z + µI). Invoking [38, Cor. 28.1.1], the
uniqueness of Y(Z) comes from the uniqueness of Y?(µ)
that was proved in [39].

Now we prove that µ? ≤ µ. First, note that d(µ) ≥ µP .
Based on the eigenvalue decomposition Z = VZΣZVH

Z , the
following inequalities hold:

tr((Z− µI)HX) = tr(VZ(ΣZ − µI)VH
Z X)

≤ (λmax(ΣZ)− µ)tr(X),

where λmax(ΣZ) = λmax(Z). In other words, d(µ) is upper
bounded by the optimal value of the following problem:

max
Y�0

ρ log det(I + YD1) + (λmax(Z)− µ)tr(Y) + µP.

(55)

When µ ≥ µ, it is not difficult to verify that the optimal
variable of (55) is 0, and thus Y?(µ) = 0. We show µ? ≤ µ̄
by discussing two complementary cases: µ̄ = 0 and µ̄ > 0.

If µ̄ = 0, d(µ̄) = d(0) = µP = 0. Since Y?(0) = 0
and the primal value is also 0, there is no duality gap. From
the definition of saddle point [37, Sec. 5.4], µ̄ = 0 is a dual
optimal variable.

If µ̄ > 0, d(µ) ≥ µP > 0. Assume µ? > µ. Then
Y?(µ?) = 0 is the optimal variable in (26) and the optimal
value of (26) is 0, but this would lead to a non-zero duality gap
and thus contradict the optimality of µ?. Therefore µ? ≤ µ.
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