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Abstract—In modern asset management, portfolio managers
address the multi-account investment decision problem by opti-
mizing each account’s portfolio separately based on the trading
requirements and portfolio constraints of the individual clients.
However, trades associated with the individual accounts are usu-
ally pooled together for execution, therefore amplifying the level
of the so-called market impact on all accounts. If this aggregate
market impact is not considered when each account is individually
optimized, the actual market impact can be severely under-esti-
mated. Multi-portfolio optimization aims at finding the optimal
rebalancing of the multiple accounts by considering their joint ef-
fects while adhering to account-specific constraints. In this paper,
we first model this phenomenon as a Nash Equilibrium problem
(NEP) and thereafter consider a generalized NEP (GNEP) for the
case where there are global constraints imposed on all accounts,
adopting as a desirable outcome the concept of Nash Equilibrium
(NE). For both game problems, we give a complete characteriza-
tion of the NE, including its existence and uniqueness, and devise
various distributed algorithms with provable convergence. Inter-
estingly, the proposed methodology heavily hinges on a number of
well-known and important signal processing techniques.

Index Terms—Convex optimization, distributed algorithms,
game theory, market impact cost, multi-portfolio optimization,
Nash equilibrium, socially optimal solution.

I. INTRODUCTION

I N financial engineering, the field of portfolio optimization
studies how to allocate funds among a number of risky as-

sets so that a certain utility function, usually given in terms of
a measure of achieved risk-adjusted return, is maximized. In a
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ground-breaking work laying down the foundations of modern
portfolio theory [1], Markowitz introduced the mean-variance
framework and justified that the optimal portfolio should be de-
termined based on the trade-off between maximizing the ex-
pected return and minimizing the risk.
Let be the vector of weights defining the proportion of

wealth allocated among a total number of assets, and assume
that the return of the -th asset over a single-period investment
horizon is modeled as a random variable denoted by . Let

be the vector of expected returns where
, and be the positive definite covariance

matrix where . In Markowitz’s
mean-variance portfolio optimization framework, the expected
return of the portfolio is while the risk of the portfolio is

. The latter is based on the intuition that the prices of
highly correlated assets will likely increase or decrease simul-
taneously, and it is thus advisable to diversify the investment
choices over a variety of assets in order to effectively reduce the
risk, which is referred to as diversification principle in finance
and investing. Then, considering the trade-off between the ex-
pected return and risk, the optimal portfolio is the solution to
the following problem:

(1)

where is a given positive constant specifying the investor’s
level of risk aversion, and is the set of feasible portfolios
specified by various trading constraints (see Section II). This
formulation reveals that among the portfolios that have the same
risk (expected return, respectively), we should choose the one
with largest expected return (smallest risk, respectively). Be-
cause of its fundamental role in investment science, (1) is an
important source problem in optimization literature [2], [3].
Since the appearance of Markowitz’s work in [1], numerous

generalizations of the classical mean-variance portfolio op-
timization framework (1) have been proposed to deal with a
variety of practical operating conditions, such as the effect
of transaction cost in the investment performance. Basically,
transaction cost can be explicit, as defined by taxes, market
fees, and brokerage commissions, or implicit, such as bid-ask
spread and market impact cost. Specifically, market impact
refers to the negative effect on the price of an asset when
executing orders that are large relative to the liquidity available
in the market [4]–[6]. The market impact component represents
the element most largely contributing to uncertainty in trading
cost analysis and portfolio performance measure, and thus
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should be properly characterized and incorporated into the
optimization model.
Let be the market impact cost function. The market

impact cost associated with rebalancing from the current posi-
tion to a new position is given by . Then
the optimization problem (1) should be revised as

(2)

In some scenarios, this formulation may still not be satisfac-
tory enough. For example, in a practical framework accommo-
dating multiple accounts, trades of separate accounts are usually
pooled and executed together. As a consequence, the market im-
pact cost of any single account depends on the aggregate trades
from all accounts [7]–[10].Mathematically, suppose there are
accounts and denote as the portfolio vector of the -th ac-
count, the market impact cost of account is

rather than . In practice, however, each
account is independently optimized while the market impact
from other accounts is naively ignored. The actual market im-
pact cost, typically much larger than the one estimated, is sub-
sequently allocated among accounts based on the proportion of
each account’s amount of trading, known as the pro rata scheme
[11]. This under-estimation of the market impact cost in the
naive approach can result in a reduction in realized returns.
A natural and direct extension of this naive approach is to ex-

plicitly consider in each account’s single portfolio optimization
problem the aggregate trades from other accounts. The resulting
multi-portfolio optimization problem is actually a non-cooper-
ative game problem in disguise, see Section II-B. The desir-
able outcome in this context is the Nash Equilibrium (NE), the
most widely used solution in applications of game theory to eco-
nomics, at which no account has an incentive to unilaterally de-
viate from it [12].
On the other hand, the NE is not efficient in the sense that

it does not necessarily maximize the total welfare over all ac-
counts, an important social welfare function in microeconomics
and widely used in practice, cf. [7], [10], [12]–[14]. Such a so-
lution is referred to as a socially optimal solution and it has been
considered first in [7] and further elaborated in [8]–[10].
In multi-portfolio optimization, a central problem associated

with the optimal solution is the fairness issue [11], [14]. It is
shown in [9], [10] that to achieve social optimality, some ac-
counts may be forced to sacrifice their own benefits. For ex-
ample, when one of the accounts is much larger in size than
the others, smaller accounts can suffer from a shortage of liq-
uidity. For those small accounts, the socially optimal solution is
not fair in the sense that they can achieve a better return profile
by acting alone such as when pursing the NE [9], [10]. If the
separate accounts belong to individual clients who care about
their own utilities only, those “smaller” clients may not be sat-
isfied with the socially optimal solution, and this is where the
NE presents itself as a more sensible solution in the sense of
fairness: no client can further maximize his payoff by unilater-
ally deviating from the NE.
Although the NE and the socially optimal solution have been

considered in [7], [9], an analytical characterization of these so-
lutions, such as the existence, uniqueness and algorithms, was

either left open [7] or only partially addressed using heuristics
under a very specific setting [9]. Besides, it is not clear if the
connection between the socially optimal solution and the NE in
[9] is still valid in a general setting.
Another shortcoming of [7], [9] is that a centralized approach

is used to generate optimal trades for all accounts simultane-
ously. However, the variable dimension in this “one-shot”
optimization problem depends on the product of the number
of accounts and the number of assets; thus the computational
cost is excessively expensive when the number of accounts
and/or the number of assets are large. Distributed computation
methods are desirable as they can make use of structure of the
problem in order to decompose a large problem into a number
of smaller problems, which are typically solved either sequen-
tially or simultaneously. The challenging question associated
with distributed algorithms is whether they converge to the
optimal solution or not, which is however left open in literature.
The design of distributed algorithms and convergence analysis
becomes more challenging when there are portfolio constraints
imposed on all accounts, which often arise due to practical
considerations, for instance liquidity limitations indicated by
the average daily trading volume (ADV) for a given asset.
In this paper, we fill these gaps in state-of-the-art theory and

practice of multi-account optimization by rigorously analyzing
the problem in a general setting building on potential game
theory. Specifically, our contributions are the following:

• We show that when all accounts are individually con-
strained, there exists a unique NE. This attractive property
in turn provides an additional justification for the NE: the
unique NE is an outcome that all accounts can predict and
agree on.

• We derive both synchronous and asynchronous distributed
algorithms with provable convergence: the multi-portfolio
optimization is decomposed into a number of smaller
single-account problems which can be solved efficiently
by existing infrastructure. The information exchange is
maintained at a very low level: each account only needs
an aggregate trading vector from the preceding iteration,
and it does NOT need the individual trading strategies of
other accounts.

• We also consider and analyze the total welfare maximiza-
tion problem. We show that the socially optimal solution
may not be unique, and this could give rise to a fairness
issue among accounts as some accounts may prefer one
solution while other accounts prefer another. Distributed
algorithms are derived to compute the socially optimal so-
lutions efficiently.

• When there are global constraints imposed on all accounts,
there exists a unique Variational Equilibrium, a special
class of generalized NE (GNE), and distributed algorithms
with satisfactory convergence properties are proposed.
Connection to Signal Processing Problems: Interestingly,

one can draw a close connection between the multi-portfolio
optimization problem and many seemingly different problems
in signal processing, communication networks, and power sys-
tems; see [15], [16] for Digital Subscriber Line (DSL) systems,
[17], [18], [20] for interference channels, [21], [22] for cogni-
tive radio (CR) networks, and [23] for power systems.
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In DSL systems, subscriber lines are usually bundled together
and they create electromagnetic interference into each other,
thus causing crosstalk noise [15], [16]. In this context, crosstalk
noise plays a similar role as market impact in multi-portfolio
optimization problem. A similar effect also happens in interfer-
ence channels [17], [18], [20].
In CR networks, secondary users (SU) can coexist with

primary users (PU) provided that the interference generated
by the SUs is tolerable for the PUs. If SUs naively transmit
without considering the interference temperature constraints,
they would generate considerable interference to PUs [21],
[22]. As a result, neither the SUs nor the PUs can achieve the
target transmission rate. This is similar to the ADV (consid-
ered in Section V) that all accounts together have to obey in
multi-portfolio optimization.
In a smart grid power system, different consumers are in-

terconnected by the price of the electricity [23]. In particular,
the price of electricity dynamically depends on the aggregate
consumption from all consumers. If one simply ignores the ex-
istence of other consumers, the estimate price of electricity is
smaller than the actual price, and this may lead to excessive
consumption and thus a much higher cost. In this context, the
consumption of electricity plays a similar role as market impact
in the multi-portfolio optimization problem.
The rest of the paper is structured as follows. In Section II, we

introduce the multi-portfolio problem, and model it as a game
and a total welfare maximization problem. In Section III, we
characterize the NE and the socially optimal solution including
existence and uniqueness, and develop various distributed algo-
rithms in Section IV. Section V deals with a generalized NEP
(GNEP) where all accounts are subject to global constraints as
well. Numerical results are presented in Section VI and conclu-
sions are drawn in Section VII.

Notation: Scalars, vectors, and matrices are denoted by ,
, and , respectively. is the -th block component of and
is the -th element of . The eigenvalues of are denoted as
, with and representing the largest and

smallest eigenvalue, respectively. denotes the largest
singular value of . is a unit vector where the -th entry
is 1. is the identity matrix and is a matrix
with all entries 1. denotes the Kronecker product of
and ; is a block diagonal matrix with and
on the diagonal in a descending order; is a diagonal
matrix with diagonal vector . and

is the positive and negative decomposition of ,
respectively. Note that and . and
are used interchangeably to denote the inner product between
and .

II. PROBLEM MODEL AND FORMULATIONS

A. Mean-Variance Utility Function and Constraints

We analyze the multi-portfolio optimization problem under
the mean-variance framework (1)—(2). Specifically, the market
impact cost function is modeled as

(3)

where is the buy (sell) vector, and
is the market impact price function

for buys (sells) giving the cost per unit traded for each asset.
For the market impact price function , we assume that

it is separable among assets [4], [7], [11], [14], i.e.,
, and with

[4], [7], where is a positive diagonal matrix representing
market impact coefficients; the modeling is similar for sells. We
assume the usual choice : this linear market impact price
function is one of the most fundamental models and has been
justified in a number of works, see [4]–[7], [9], [11], [14], [24].
In the presence of multiple accounts, the market impact price

function depends on the aggregate trade from all accounts [9],
i.e., , and the market
impact cost for each account is proportional to their individual
trade amount (the pro rata scheme [11]). Under this considera-
tion, the utility function for account is1

(4)

where represents the strategies of account
’s competitors, i.e., all accounts except account . Since the
mean-variance framework focuses on a single-period invest-
ment, we assume that , , , are fixed [11], [24].
As in (1)—(2), the feasible trading strategy is in a closed

and convex constraint set . In general, these portfolio con-
straints may consist of two categories: individual constraints
and global constraints. They together make sure that the strate-
gies in each account’s constraint set are not only feasible for the
particular account but also feasible in the market.
1) Individual Constraints:
• Holding constraint: To reduce risk, a portfolio should not
exhibit large concentrations in any specific asset. Minimal
and maximal holdings can be controlled by constraints of
this form: .

• Long-only constraint (no short-selling constraint): In the
process of short-selling, we sell an asset that we borrowed
from someone else, and repay our loan after buying the
asset back at a later date. Short-selling is profitable if the
asset price declines. Because of the risky nature, it is pro-
hibited or purposely avoided sometimes. Mathematically,
the long-only constraint corresponds to and it is
a special case of the holding constraint where and

.
• Budget constraint: .

1In (3)—(4), the market impact costs for buys and sells are separated [9].
There is another model for the market impact price function where buys and
sells can be internally crossed, and the corresponding market impact cost for ac-
count is . This model is simpler (as buys and sells cannot
always be crossed internally) and can be analyzed by the same methodology to
be developed in this paper.
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Additional constraints, such as tracking error (benchmark
exposure) constraints, risk factor constraints, cardinality con-
straints, and direct transaction costs constraints (including
broker commissions and taxes) can be taken into consideration
as long as they are convex or they can be approximated using
convex techniques [24]; see [14, Ch. 4] for a review of portfolio
constraints. It is easy to see that if each account is subject
to individual constraints only, one account’s strategy set is
independent of other accounts’ strategies.
Note that different accounts need not manage the same set of

assets, and this can be formulated by proper individual portfolio
constraints. For example, setting implies that
asset is not managed by account . Besides, each account
needs not follow the same set of individual constraints either.
For example, if account does not have a budget constraint,
one can simply set .

Global Constraints: In some circumstances, there may
exist regulations on all accounts, and these regulations can be
modeled as global (coupling) constraints.
• Turnover or transaction size constraints over multiple ac-
counts, which are used to limit the average daily trade
volume associated with the -th asset:

(5)

• Limitations on the amount invested over groups of assets
with related characteristics (e.g., industries, sectors, coun-
tries, and asset classes, etc.):

(6)

Other convex global constraints such as limit of liquidity
can be straightforwardly incorporated as well.

It is easy to see from (5)—(6) that one account’s available
strategies also depend on other accounts’ actions. In other
words, the presence of global constraints introduces coupling
into each account’s strategy set, and complicates the analysis
and design dramatically.

B. Problem Formulations

In this subsection, we introduce several formulations for the
multi-portfolio optimization problem, as detailed next.
1) Game Theoretical Formulation Under Individual Con-

straints: We formulate the optimization as a NEP: each account
competes against the others by choosing a strategy that max-

imizes his own utility function. Stated in mathematical terms,
given the strategies of other accounts , account solves
the following optimization problem:

(7)

where is defined in (4), and is a non-empty,
closed, and convex set specified by the individual portfolio con-
straints. Since each account’s strategy set is independent of the
rival accounts, the joint strategy set of all accounts has a Carte-
sian structure, i.e., .

2) Naive Solution: We can mathematically recover the naive
solution from the proposed formulation (7), in which the aggre-
gate effect from other accounts is simply ignored and the opti-
mization problem for each account is [9]

(8)
Now it is clear that the NEP is a natural and direct improvement
and extension of the naive solution by explicitly considering the
aggregate trades from others accounts.
With the NEP formulation, the desirable outcome is the well-

known notion of NE, which is achieved when no account has an
incentive to deviate from it unilaterally:
Definition 1: A (pure) strategy profile is a

NE of the NEP (7) if

(9)

3) Game Theoretical Formulation Under Global Con-
straints: When there are global constraints imposed on all
accounts, there is coupling in both utility functions and con-
straint sets [25]. This can be modeled as a GNEP, in which
account solves the following problem:

(10)

where denotes the global constraints (5)—(6):

(11)

The joint strategy set of all accounts of the GNEP (10) is thus

(12)

A solution of the GNEP (10), termed GNE, can be defined
similarly to a NE of the NEP (7). Specifically, a (pure) strategy
profile is a GNE of the GNEP (10) if for all

and we have

(13)

The lack of Cartesian structure in (12) makes the analysis of the
GNEP much more difficult than that for the NEPs [21], [25],
[26]. We study the GNE in Section V.
4) Total Welfare Maximization Problem: In general, the NE

is not efficient in the sense that it is not necessarily socially
optimal. The social problem is defined as:

(14)



5594 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 22, NOVEMBER 15, 2013

and also has to satisfy the global constraints if they
are present.
Remark 2: In addition to the above formulations, there also

exist other fairness concepts such as proportional fairness so-
lutions, max-min fairness solutions and equitable efficient so-
lutions [11], [13]. In this paper, however, we do not aim at ob-
taining themost fair solution.We instead provide a thorough and
rigorous theoretical analysis on two existing solution concepts,
namely the NE and the socially optimal solution with roots in
microeconomics [12], where the market impact cost, allocated
by the pro rata scheme [11], is explicitly modeled as a part of
the utility function.

III. MULTI-PORTFOLIO OPTIMIZATION PROBLEM WITH
INDIVIDUAL CONSTRAINTS

In this section, we provide a complete characterization of the
NE and socially optimal solutions, when each account is only in-
dividually constrained (we will discuss the globally constrained
case in Section V). The analysis is carried out under the frame-
work of potential game theory, an important class of games that
allows us to infer the properties of the NEP by solving standard
optimization problems [19], [27]–[29].
A potential game is formally defined below [27]; see [19] for

a general and recent developments of potential games.
Definition 3: The NEP (7) is called a(n exact) potential game

if there exists a function such that
for all accounts and :

(15)

A key rule in the study of potential games is played by the
following standard optimization problem, where the objective
function is just the potential function :

(16)

The relationship between the NEP (7) and problem (16) is given
in the following lemma [28].
Lemma 4: Let the NEP (7) be a potential game with a con-

cave potential function . If is an optimal solution of
(16), then it is a NE of the NEP (7). Conversely, if is con-
tinuously differentiable and is a NE of the NEP (7), then

is an optimal solution of (16).

A. Reformulation of the Single Account Problem

Before studying the NEP, let us rewrite (7) in a more conve-
nient form. In fact, the projections in the utility functions
and are generally difficult to handle because of the non-
convexity and nondifferentiability they bring about. To cope
with these difficulties, we introduce new nonnegative variables

and make the following variable substitutions:

Then the utility function (4) in terms of the new variable is
(some constants are added)

(17)

With this change of variable, the new constraint set is

which is convex in .
Note that is not necessarily equivalent to

because is by definition orthogonal
to , but such an orthogonality is not imposed
between and ; instead, and are only assumed
to be nonnegative. However, in the following lemma we prove
that this orthogonality property is automatically satisfied at the
optimal and .
Lemma 5: In the optimization problem of account (7),

given any arbitrary but fixed feasible , the optimal
buy vector and sell vector are orthogonal.

Proof: See Appendix A.
Remark 6: The diagonal structure of and is crucial in

proving the orthogonal property of optimal and . How-
ever, Lemma 5 still holds without the diagonal structure if buys
and sells are not separated.
Lemma 5 states that there is no loss of optimality when we

replace with without assuming the or-
thogonality between and . We can then work with the
new utility function , which is a strongly concave
and twice differentiable function in .

B. Characterization of Nash Equilibrium

According to Lemma 5, the NEP (7) is equivalent to

(18)

The NEP (18) is a potential game, as shown next.
Lemma 7: The NEP (18) is equivalent to the following opti-

mization problem:

(19)

where , ,

(20)
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and is an matrix with all entries equal to 1.
Now we can obtain existence and uniqueness results of the

NE by invoking existence and uniqueness results of an optimal
solution of (19). They are stated in the following theorem.
Theorem 8: There exists a unique NE of the NEP (18).
Proof: The existence and uniqueness results follow from

the strong convexity of (19). To prove this, we need to show
there exists a positive constant such that

, which is equivalent to showing that
for any :

where the inequality comes from and . This
completes the proof.
The uniqueness property in Theorem 8 is a very general re-

sult and it holds whatever the (possibly different) constraints
each account is subject to. Thanks to the uniqueness, one can
predict the outcome of the game, making the game theoretical
formulation a viable approach [12].

C. Total Welfare Maximization Problem

Invoking Lemma 5, we can rewrite the total welfare maxi-
mization problem (14) in a more manageable form:

(21)

where

(22)

Following the proof of Theorem 8, it is not difficult to see that
is a concave (but not strongly concave) function in ;

therefore, (21) is a convex problem, having in general multiple
solutions. This gives rise to a fairness issue as different socially
optimal solutions may favor different accounts, and incurs addi-

tional difficulties in reaching an agreement on the desirable out-
come among competing accounts or allocating liquidity among
a portfolio manager’s constituent accounts.
We see from (19) and (21) that the two functions and

are related as

(23)

indicating that we can add a pricing term to each account’s
utility function in (17) so that is identical to

and the NE is also socially optimal [9]. This conjecture is
consolidated in the following proposition, which can be proved
using the definition of potential games.
Proposition 9: The total welfare maximization problem (21)

is equivalent to the NEP shown in (24) at the bottom of the page.
Note that the equivalence stated in Proposition 9 holds re-

gardless of the types of individual constraints each account is
subject to; the observation in [9] is thus greatly generalized. The
interesting interpretation of the socially optimal solution as the
NE of a modified NEP enables us to regard [7], [9] as special
cases of our framework: both the NE and the socially optimal
solution can be achieved by same algorithms.
Remark 10: It is beneficial mainly from a conceptual per-

spective to interpret the socially optimal solution as the NE of
the NEP (24): the market impact price in the total welfare max-
imization problem is higher than the game theoretical formula-
tion (the difference is ), so small ac-
counts tend to trade less in socially optimal solutions.

IV. SYNCHRONOUS AND ASYNCHRONOUS ITERATIVE
DISTRIBUTED ALGORITHMS

In view of Lemma 7, a NE of the NEP (18) is also an optimal
solution of (19) and vice versa. This equivalence is exploited
in [7], [9]: to calculate the NE, general-purpose centralized al-
gorithms are applied to solve (19) directly. However, the com-
plexity of (19) depends on the product of the number of accounts
and the number of assets; thus they may not be efficient when
the number of accounts and/or the number of assets are large.
In what follows, we derive distributed algorithms to solve (19).
They are desirable as they can make use of problem structure
and decompose a large problem into a number of smaller prob-
lems, which are typically much easier to solve. Note that the
convergence analysis of the following distributed algorithms is
similar for the social formulation (21), and it is omitted here due
to space constraints.

A. Synchronous Algorithms

We consider iterative algorithms based on sequential or si-
multaneous updates of each account’s strategy profile based on

(24)
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single-account best response, given by Algorithm 1. Both se-
quential and simultaneous algorithms have some desirable prop-
erties that make them appealing in practice, namely: low com-
plexity, distributed nature, and fast convergence behavior.

Algorithm 1: Sequential/Simultaneous Best-Response
Algorithm

Data: for . Set .

: If satisfies a termination criterion: STOP.

: Sequentially or simultaneously update :

: ; go to .

The convergence properties of Algorithm 1 are given in
the following proposition, whose proof follows standard argu-
ments; see [30, Prop. 2.7.1] and [30, Ex. 1.8.2].
Proposition 11: Any sequence generated by the

sequential/simultaneous best-response updates in Algorithm 1
converges to the NE of the NEP (18).
In Algorithm 1, the multi-portfolio optimization problem

(19) is decomposed into small problems, and we refer
to each small problem as “single-account problem”. These
single-account problems are solved either sequentially or si-
multaneously by the portfolio manager. Each single-account
problem is strongly convex, and existing single-account port-
folio optimization infrastructure can readily be applied.

Information Exchange: Since Algorithm 1 is an iterative
algorithm, some information exchange is required among
different single-account problems in each iteration, but this is
maintained at a very low level. For example, in the context
of simultaneous update (the analysis for sequential update is
similar), the -th single-account problem in Step 2 is

Therefore, the only information required in iteration is
the aggregate trading vector in iteration . Note that
the exact trading strategies are not required, so the
privacy of individual accounts is preserved.

Complexity Analysis: Recall that the variable dimension of
(19) is and the number of constraints is (suppose for
simplicity is the equal number of individual constraints for
each account), while in the single-account problem, the dimen-
sion of the single portfolio vector is and the number
of constraints is ; thus the reduction in complexity is no-
table especially when and are large. Although (19) can be

solved in “one shot” by general-purpose centralized algorithms,
the distributed algorithms often converge reasonably fast, with
the advantage that the privacy of each individual account is pre-
served as each single account problem does not know the spe-
cific strategies of other accounts.

B. Asynchronous Algorithms

Both sequential and simultaneous algorithms place syn-
chronization requirements among different single-account
problems. This requirement may be restrictive when, for
example, some single-account problems need more time to
solve (this happens when, e.g., some accounts have many
trading constraints) and others have to wait for them to finish.
This delay could also result in another difficulty, namely,
the latest aggregate trading vector may not be available for
some single-account problems. To deal with these issues, we
introduce in this subsection an asynchronous algorithm (in the
sense specified in [31]) in which some portfolio vectors can be
updated more frequently than others, and the update can even
be based on outdated information.
To provide a formal description of the asynchronous algo-

rithm, we need to introduce some preliminary definitions. Let
be the set of times at which is up-

dated (thus implying that is left unchanged if ). Let
denote the most recent time at which the strategy profile

of account is perceived at the -th single-account problem in
the -th iteration (observe that ). Hence, if is
to be updated at the -th iteration, then is maxi-
mized using the outdated strategy profile of the other accounts
denoted by .
We assume that there exists a positive constant , called

asynchronous measure, such that 1) the strategy variable of each
account is updated at least once during any time interval of
length , and 2) the information used by any single-account
problem is outdated by at most time units. The asynchronous
algorithm is formally described in Algorithm 2.

Algorithm 2: Asynchronous Best-Response Algorithm

Data: for ; stepsize . Set .

: If satisfies a termination criterion: .

: For , if , update as

Otherwise it is left unchanged.

: ; go to .

Convergence of Algorithm 2 is stated in the following propo-
sition, whose proof follows the same ideas as in [31, Sec 7.5,
Prop. 5.3] and thus is omitted.
Proposition 12: Any sequence generated by Algo-

rithm 2 converges to the NE of the NEP (18) if
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It is easy to see that since the stepsize is inversely propor-
tional to the asynchronous measure , there is a tradeoff be-
tween asynchronous measure and convergence speed.
Thanks to the asynchronous algorithm, the coordination

among different problems is maintained at a minimum level,
making the distributed algorithms very practical.

V. MULTI-PORTFOLIO OPTIMIZATION PROBLEM WITH
GLOBAL CONSTRAINTS

A. Nash Equilibrium Problems With Global Constraints

In all previous developments we have considered individual
constraints and coupling among accounts is only in the utility
functions. In this section, we consider the more general scenario
in which there is also coupling in each account’s strategy set. For
example, one account’s trading volume on a particular asset can
be limited by other accounts because of the ADV of the assets
in the common investment universe.
The coupling in each account’s strategy set can be modeled as

global constraints over all accounts [19], [21], [25], [26], [29].
This results in a NEP with global coupling constraints, termed
as GNEP, defined in (10). It is easy to verify that the conclusions
of Lemma 5 still hold when there are global constraints, so we
can rewrite (10) in terms of the new variables :

(25)

where the utility function is defined in (17), and is the
global constraint (11) written in terms of the new variables :

(26a)

with

(26b)

B. Characterization of Generalized Nash Equilibrium and
Socially Optimal Solutions

It is easy to see from Definition 3 that the definition of poten-
tial functions can readily be extended to the GNEPs (so
in (19) is a potential function of the GNEP (25)) and if max-
imizes the potential function, it is also a GNE of the GNEP. But
differently from the NEP (18), the GNE of the GNEP (25)
does not necessarily maximize the potential function over the
joint strategy set (12) [28]:

(27)

This is because the Cartesian structure in the joint strategy set of
all accounts is destroyed by the global constraints [cf. Equation
(12)].
Inspired by [26], we use a well-known result in convex anal-

ysis to derive the relationship between a GNE of the GNEP

(25) and an optimal solution of (27): for a convex optimization
problem with strong duality, the pair of primal optimal solution
and dual optimal solution is a saddle point of the Lagrangian [32,
Th. 28.3]. Specifically, we assume that some constraint qualifi-
cations such as Slater’s condition are satisfied for (25) and (27).
Then let be a GNE of the GNEP (25), there
exists such that

(28)

where means . Similarly, let be an optimal
solution of (27), there exists such that

(29)

A comparison of (28) and (29) enables us to give a precise
connection between the GNE of a GNEP (25) and the optimal
solution of its potential game formulation (27), as summarized
in the following proposition.
Proposition 13: Suppose that is an optimal solution of

(27) and satisfies (29). Then is a GNE of the GNEP
(25), and (28) holds with . Con-
versely, suppose that is a GNE of the GNEP (25), and (28)
holds with , then is an optimal
solution of (27) and satisfies (29).
To summarize, a GNE of the GNEP (25) is generally not an

optimal solution of (27), unless at the GNE, the dual variables
associated with the global constraints for all accounts are iden-
tical. The GNE of the GNEP (25) that is also the optimal solu-
tion of (27) are termed Variational Equilibrium (VE), denoted
as . From now on, we mainly focus on the VE of the GNEP
(25), whose (existence and) uniqueness comes readily from the
strong convexity of (27).
Corollary 14: The GNEP (25) has a unique VE.
Similarly to the NEP case in Section III, the socially optimal

solution of GNEP (25) can also be interpreted as a GNE of
a modified GNEP, which is the NEP (24) with the additional
global constraint .

C. Distributed Algorithms

The potential game formulation of the GNEP (25), i.e., (27),
not only serves as a direct way to characterize the VE, but also
provides us with some intuition to devise distributed algorithms.
We develop next a distributed algorithm converging to the VE of
the GNEP (25). We introduce the algorithm in a general setting,
so that it can be applied to a broader class of GNEPs, including
the GNEP (25) as a special case.
Towards this end, consider a generic GNEP where account

solves the following convex optimization problem

(30)
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where is concave on , is convex on
, and is closed and convex. Suppose the NEP

(30) has a differentiable concave potential function while
some constraint qualifications such as Slater’s condition are sat-
isfied. We also introduce a new NEP

(31)

and denote its NE for a given as .
The relationship between the GNEP (30) and the NEP (31) is

given in the following theorem.
Theorem 15: In the setting above, is a VE of the GNEP

(30) if and only if , where sat-
isfies

(32)

Proof: See Appendix B.
Note that in Theorem 15, we have only assumed that (30)

is convex and the potential function is concave on .
It therefore applies to a broad category of potential games in-
cluding the GNEP (25).
From the perspective of duality theory [32], is the Lagrange

multiplier associated with the constraint and is the
dual optimal solution. We can also interpret as prices paid
by the accounts for the common “resources” represented by the
global constraints. The complementary slackness condition in
(32) says that we only have to pay when the resources become
scarce; the price is 0 when there are enough resources.
Thanks to Theorem 15, we have transformed the computa-

tion of the VE of the GNEP (30) into that of a NE of the NEP
(31). By doing that, we have decoupled the constrains on the
accounts by incorporating the global constraints as part of the
utility function. This transformation is beneficial because we
can achieve the NE of the NEP (31) –the VE of the GNEP (30)
– in a distributed manner using Algorithms 1 or 2. Of course,
in (32) is unknown a priori, but it can be found by, for example,
subgradient method. Specifically, we can design a double-loop
algorithm: in the inner loop, given the price , one computes
the unique NE of the NEP (31); in the outer loop, the
price is updated according to a subgradient-based projection
method [note that a subgradient at is ]. We
summarize this double-loop algorithm in Algorithm 3.

Algorithm 3: Subgradient Projection Algorithm

Data: ; stepsize sequence . Set .

: If satisfies a termination criterion: .

: Compute the unique NE of NEP (31).
: Update according to

; go to .

There are some well-known stepsize rules to guarantee the
convergence to . For example, one can use [33]:

If the potential function of (30) is strongly concave, which is
indeed the case for in (27), Algorithm 3 would also
converge under a constant (but sufficiently small) stepsize [34]:

where with if and 0 otherwise,
and is always feasible, i.e., . If the
potential function is concave but not strongly concave [the case
for in (21)], is not necessarily feasible, but one
can deal with this issue by averaging all intermediate variables

; see [35] for more details.
In the inner loop (Step 2) of Algorithm 3, NEP (31) can be

solved by Algorithms 1 or 2, leading to a distributed design. An
instance of simultaneous update among accounts for Step 2 of
Algorithm 3 is summarized in Algorithm 4.

Algorithm 4: Distributed Implementations for Step 2 of
Algorithm 3

Data: , for . Set .

: If satisfies a termination criterion: STOP.

: Simultaneously update as

where is

: ; go to .

Specializing the general formulation (30) to the multi-port-
folio optimization problem in (25), and invoking the separable
structure of in (26), the NEP formulation in (31) can be
further simplified as

(33)

Therefore, to solve the NEP (33) in each iteration of Algorithms
1 or 2, the only information required by the -th single-account
problem is the aggregate trading vector from the preceding iter-
ation, and the remarks on implementation issues of Algorithms
1–2 in Section IV readily apply here.
In the outer loop (Step 3) of Algorithm 3, to update the

price vector , the portfolio manager needs to collect the
aggregate trading vector of some particular (groups of) assets:

(recall that ’s are constituent vectors
of : ). The price vector is then
adjusted according to the (inexpensive) subgradient projection.
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Fig. 1. Utility improvement of the NE and socially optimal solution against the
naive approach.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide some numerical results to illus-
trate the efficacy of our multi-portfolio optimization framework,
along with the convergence behavior of the proposed distributed
iterative algorithms. In our simulations, we consider synthetic
data such that , , and model annual expected values from

to 5% and volatility values given in annualized terms in
the range of 20% to 30%. We assume that the number of assets
is .
1) Utility Improvement: We first compare each account’s

utility improvement achieved by NE and socially optimal so-
lutions over the naive approach measured by:

where is the optimal solution of (8) with , and
is defined in (4). We assume that there are

accounts and they are subject to the long-only constraint and
budget constraint. The result is plotted in Fig. 1. We can see
from the red bar that the performance of the NE outperforms
the naive design, because the market impact cost incurred from
transactions of other accounts are properly counted.
We also compare the NE (red bar on the left) and the socially

optimal solution (black bar on the right). We can see that the
social optimality is at the price of accounts 1, 3 and 4. This con-
solidates again what has been observed in [9]: some accounts
can probably get better payoff by acting alone than staying in
the socially optimal solution. The unilateral optimality and the
uniqueness makes the NE ameaningful outcome that can be pre-
dicted by all accounts.
To compare the NE and the socially optimal solution from

the perspective of total welfare, we also plot in dashed lines the
following metric:

Fig. 2. Convergence of Algorithm 1: potential function versus iteration.

As expected, socially optimal solutions can achieve a higher
total welfare than NE.
2) Convergence of Algorithm 1: We assume that the number

of accounts is 5, 10 and 20, respectively, and each account is
subject to the long-only constraint. The results are illustrated in
Fig. 2, where we update the portfolio in each iteration and the
resulting value of the potential function is plotted. We
can see that the algorithm converges reasonably fast for both
sequential and simultaneous update, with the convergence speed
depending as expected upon the number of accounts.
3) Global Constraint: We assume that each account is sub-

ject to the long-only constraint. In Fig. 3, we can see that, as the
number of accounts increases, the global transaction-size con-
straint may be violated if it is not properly considered. Moti-
vated by liquidity problems for a specific asset in practice, the
issue is specially aggravated due to the aggregate effect over ac-
counts.
4) Convergence of Outer Loop of Algorithm 3: We assume

that the number of accounts is 5 and 10, respectively. Each ac-
count is subject to the long-only constraint, and the accounts
are also subject to the global transaction-size constraint as (5).
The convergence behavior of the outer loop of Algorithm 3 is
illustrated in Fig. 4, where in each iteration we generate the
NE for a fixed and the corresponding duality gap (defined as

where is ob-
tained a priori from solving (27) by [36]) is plotted. We see
that the asymptotic convergence speed of is fast and indepen-
dent of the number of accounts, since the GNEP (25) is solved in
its dual domain and the dimension of the dual variable is equal
to the number of global constraints.

VII. CONCLUDING REMARKS

In this paper, we have studied the multi-portfolio optimiza-
tion problem where multiple accounts are coupled through the
market impact cost, which is modeled as an affine function of
the aggregate trades from all accounts. The analysis is from
the perspective of non-cooperative game theory, and we have
shown that there always exists a unique NE, and moreover de-
vised (synchronous and asynchronous) distributed algorithms
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Fig. 3. Global transaction-size versus number of accounts.

Fig. 4. Convergence of Algorithm 3: duality gap versus iteration.

with satisfactory convergence properties. Then we have ana-
lyzed the NEP with global constraints imposed on all accounts,
resulting in a GNEP. We have shown as well that there always
exists a unique VE which can be computed in a distributed
manner. Finally, we have considered the maximization of the
total welfare along with distributed schemes.

APPENDIX A
PROOF OF LEMMA 5

Proof: In (17), the utility function of account is

(34)

and the constraint is . The former two terms
of (34) depend only on the difference between and . We
use contradiction to show that at the optimal solution, and

are orthogonal.
First assume that there exists such that

. It is easy to see that the variable
is feasible since

. Consider a new function
with defined as

which is convex in . The convexity of infers that
minimizes over iff :

where we have made use of the fact that are positive
diagonal matrices and . This establishes that
minimizes over , and is the maximizing
variable of in (34), contradicting the optimality
of . This completes the proof.

APPENDIX B
PROOF OF THEOREM 15

Proof: A variable is a VE of the GNEP (30) if and only
if it solves the following optimization problem:

(35)

Since (35) is a convex optimization problem, the optimal so-
lution of (35) can be equally achieved from its dual problem,
provided Slater’s condition is satisfied [2]:

(36)

where and is
the Lagrange multiplier associated with .
For a fixed , the inner maximization problem in (36) is a

potential game equivalent to the following NEP:

(37)

Since is a saddle point of the minimax problem (36)
[32], can be obtained by solving (37) with while

are primal feasible, dual feasible and satisfy the com-
plementary slackness condition.
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