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Abstract—Cognitive Radio (CR) systems are built on the
coexistence of primary users (PUs) and secondary users (SUs),
the latter being allowed to share spectral resources with the
PUs but under strict interference limitations. However, such
limitations may easily be violated by SUs if perfect SU-to-
PU channel state information (CSI) is not available at the
secondary transmitters, which always happens in practice. In
this paper, we propose a distributed design of MIMO CR
networks under global interference temperature constraints that
is robust (in the worst-case sense) against SU-to-PU channel
uncertainties. More specifically, we consider two alternative
formulations that are complementary to each other in terms of
signaling and system performance, namely: a game-theoretical
design and a social-oriented optimization. To study and solve
the proposed formulations we hinge on the new theory of finite-
dimensional variational inequalities (VI) in the complex domain
and a novel parallel decomposition technique for nonconvex
sum-utility problems with coupling constraints, respectively. A
major contribution of this paper is to devise a new class of
distributed best-response algorithms with provable convergence.
The algorithms differ in computational complexity, convergence
speed, communication overhead, and achievable performance;
they are thus applicable to a variety of CR scenarios, either
cooperative or non-cooperative, which allow the SUs to explore
the trade-off between signaling and performance.

Index Terms—Cognitive Radio System, Game Theory, MIMO
System, Successive Convex Approximation, Complex Variational
Inequalities, Worst-Case Robust Design.

I. INTRODUCTION

THE INCREASING demand of wireless service calls for
flexible and efficient usage of the scarce radio spectrum,

which is however underutilized by current fixed spectrum
assignment policies. Cognitive Radio (CR) has presented a
promising solution to this problem by allowing intelligent
cognitive nodes to access the licensed bandwidth [1]. As a
widely accepted concept [2, 3], a CR system is built on
a hierarchical structure, composed of primary users (PU),
the legacy spectrum holders, and secondary users (SU), the
unlicensed users who are allowed to access the spectrum,
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provided that they do not induce too much interference at
the primary receivers.

The design of secondary CR systems has been addressed
in a number of works, under different assumptions, e.g., [4–
14]. Current formulations mainly follow two complementary
design philosophies, namely: a “system-oriented” optimization
(also termed network utility maximization (NUM)) [4–8],
and a “user-oriented” distributed design, mostly based on
game theory [9–13]. The quality of service (QoS) of the
PUs is protected by imposing interference constraints to the
SUs; either local interference constraints (i.e. at the level
of each SU) [9, 10, 12] or global interference constraints
(i.e., on the overall interference generated by all the SUs)
[4, 5, 7, 11, 13] have been adopted. Figure 1 shows an example
of the importance of using global rather than local interference
constraints. In this figure, we compare the interference power
received by a PU along different angular directions generated
by the SUs in the presence of local and global interference
constraints; as a benchmark, we also plot the interference
experienced by the PU in the absence of any constraints on
the SUs’ transmissions (e.g., as in classic iterative waterfilling
algorithm (IWFA) [15]). The analysis of the figure shows
that local interference constraints might be too conservative,
whereas global interference constraints lead to a more flexible
design and thus efficient use of the available resources.

Global interference constraints are introduced in [4, 6, 11]
for CR SISO, SIMO and MISO systems. In the context
of MIMO systems, the analysis is mainly limited to local
interference constraints [9, 10, 12, 16], with the exception of
[5], where the authors focused on the sum-rate maximization
of the SUs under global interference constraints, and proposed
a primal-based decomposition algorithm, whose convergence
however has been observed only numerically. Moreover, in the
above works, the CR system is designed under the premise of
perfect SU-to-PU channel state information (CSI), which is
however not a realistic assumption, due to, e.g., inaccurate or
limited CSI at the secondary transmitters and lack of full co-
operation between SUs and PUs. It is therefore of paramount
importance to take the channel uncertainties explicitly into
account in the system design.

Capitalizing on a norm-bounded channel uncertainty model,
worst-case robust (centralized and distributed) designs for
MIMO system have been proposed in [6, 7, 12, 17–20], under
local interference constraints. To the best of our knowledge,
the only paper dealing with (worst-case) robust global inter-
ference constraints is [7] (appeared after the initial submission
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Fig. 1. Typical interference profile at a PU as a function of the angle caused
by the SUs in a MIMO CR system, under local (black curve), global (green
curve), and no (blue curve) interference constraints.

of this work), where the minimization of the sum-Mean-
Square-Error (MSE) in MIMO systems is formulated. While
promising, the algorithmic approach in [7] is however not sup-
ported by any theoretical study, leaving open the issue of the
convergence of the algorithms therein. Moreover, algorithms
in [7] are sequential schemes: only one SU at a time is allowed
to update his transmit covariance matrix; a fact that in large
scale networks may lead to excessive communication overhead
and slow convergence.

The present paper considers an underlaying MIMO CR
system, composed of an arbitrary number of PUs and SUs, the
latter modeled as vector Gaussian interference channels (IC);
inaccuracies in the SU-to-PU CSI are captured using a norm-
bounded uncertainty model, and the QoS of the PU is pro-
tected by (worst-case) robust global interference constraints.
Our interest in this setting is to develop distributed design
solutions. To explore the trade-off between SUs’ performance
and (PU-to-SU and SU-to-SU) signaling, we follow two alter-
native design philosophies, namely: a game-theoretical and a
social-oriented design. A description of these two approaches
along with the main contributions of the paper is given next.

Game-Theoretical Formulation. We formulate the system
design as a Nash Equilibrium Problem (NEP), where each SU
competes against the others to maximize his own transmission
rate subject to robust global interference constraints as well
as power constraints. Global interference constraints introduce
a challenge in the system design since they couple the SUs:
how to enforce such constraints without requiring a centralized
optimization? We address this issue by introducing a pricing
mechanism in the game, through a penalization in the SUs’
objective functions. The prices need to be chosen so that the
robust interference constraints are satisfied at any solution
of the game and a clearing condition holds; they are thus
additional variables to be determined.

This formulation faces many challenges: i) the non-
differentiability of the SUs’ objective functions; ii) the semi-
infinite attribute of the robust interference constraints; iii) the
lack of boundedness of the price variables and the presence
of global constraints (in the form of a clearing condition); and

iv) the complex matrix nature of the optimization variables.
To cope with these issues, we hinge on the theory of complex
variational inequalities (VI), recently developed in [21]. Cap-
italizing on [21], we provide a satisfactory solution analysis
of the proposed NEP (in terms of conditions for the existence
and uniqueness of a solution), devise distributed asynchronous
best-response algorithms, and study their convergence. We
remark that the proposed framework based on complex VIs
is expected to be broadly applicable to other complex NEP
formulations with global constraints.

The developed solution methods are suitable for a dis-
tributed implementation, provided that a limited signaling
is exchanged between PUs and SUs. There are CR scenar-
ios wherein such a SU-to-PU signaling is either inaccurate
or impossible at all. Building on consensus algorithms, we
discuss how to implement our schemes when no SU-to-PU
signaling is allowed. Finally, we corroborate the proposed
game-theoretical model via numerical results, showing that
our schemes based on robust global interference constraints
outperform (in terms of achievable sum-rate) current decen-
tralized state-of-the-art designs based on robust local interfer-
ence constraints [12].

Social-oriented Design. It is well-known that a Nash Equi-
librium (NE) may not be Pareto efficient. It is then important
to quantify the performance loss in using game-theoretical
solutions. To do that, we consider the social counterpart of the
proposed NEP, that is the sum-rate maximization problem sub-
ject to the same robust global interference constraints. Since
the problem is NP-hard, our goal is to develop distributed
algorithms converging to stationary (possibly locally optimal)
solutions. Here, the challenging issue is the nonconvexity of
the sum-rate function, which prevents the application of stan-
dard primal/dual decomposition techniques [22, 23]. Indeed,
under a non-zero duality gap, the convergence of primal/dual
schemes is in jeopardy [5, 7]. By exploiting the successive
convex approximation (SCA) framework proposed in [24], a
second major contribution of this paper is to devise a first
class of distributed primal and dual decomposition algorithms
with provable convergence. In the proposed schemes, the
SUs solve in parallel a sequence of convex optimization
problems, converging to a stationary solution of the robust
sum-rate maximization problem with coupling constraints. To
be implemented, however, such algorithms require more PU-
to-SU and/or SU-to-SU signaling than that of game-theoretical
schemes. Because of that, in some scenarios they might not
be implementable, making the game-theoretical schemes the
only feasible and valuable choice. Numerical results show that
stationary solutions yield higher sum-rates than those at the
NE; for instance, in the simulated scenarios, we experience a
performance gap of no more than 10%, which happens when
the interference limits become the dominant constraints (i.e.,
much smaller than the power budget).

Overall, the paper presents two complementary system
designs together with distributed solution methods, which
differ in complexity, convergence speed, SU-to-SU and PU-
to-SU communication overhead, and sum-rate performance;
they are thus applicable to a variety of CR scenarios, either
cooperative or non-cooperative, allowing the SUs to explore
the trade-off between signaling and performance.
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Notations: ‖x‖ is the Euclidean norm of x and ‖X‖ is
the Frobenius norm of X. We use x (or X) as a compact
notation for x1, . . . ,xI (or X1, . . . ,XI ): x = (xi)

I
i=1 (or X =

(Xi)
I
i=1). λmin(X) and λmax(X)) denotes the smallest and

largest eigenvalue of X, respectively. σmax(X) is the largest
singular value of X. �(•) is the real operator.

〈
x,y

〉
� xTy

is the inner product of x and y, and
〈
X,Y

〉
� �(tr(XHY))

is the inner product between complex matrices X and Y.
The rest of the paper is organized as follows. Section

II introduces the system model and outlines the two com-
plementary robust formulations. Section III deals with the
robust game-theoretical formulation, and addresses the solu-
tion analysis and design of distributed algorithms along with
their convergence properties; some practical implementation
issues are also discussed. The robust sum-rate maximization
is studied in IV, where a new class of primal/dual decom-
position algorithms with provable convergence is introduced.
A numerical comparison of the two approaches is given in
Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we introduce the system model (Section II-A)
and outline the two robust design problems: a game-theoretical
formulation (Section II-B) and a NUM-based optimization
(Section II-C).

A. System model

Consider a hierarchical MIMO CR system composed of P
PUs sharing the licensed spectrum with I SUs, modeled as
a MIMO Gaussian IC. Each SU i is equipped with nTi and
nRi transmit and receive antennas, respectively, and PUs may
have multiple antennas. Let Hji (resp. Gpi) be the cross-
channel function from SU i to SU j (resp. PU p). Under basic
information theoretical assumptions, the transmission rate of
SU i is

ri(Qi,Q−i) � log det
(
I+HH

iiRi(Q−i)
−1HiiQi

)
(1)

where Qi is the transmit covariance matrix of SU i, Q−i �
(Qj)j �=i, Ri(Q−i) � Rni +

∑
j �=i HijQjH

H
ij with Rni � 0

being the covariance matrix of the noise plus the interference
generated by the active PUs. The feasible set of SU i is

Qi �
{
Qi � 0 :

tr(Qi) ≤ P tot
i , λmax(Qi) ≤ P peak

i

[Qi]qq ≤ P ant
iq , q = 1, . . . , nTi

}
,

(2)
where P tot

i is the total transmit power in units of energy
per transmission; in (2), we have also included peak average
and per-antenna power constraints, P peak

i is the spatial peak
average power threshold, and P ant

iq is the average power
constraint for the q-th antenna of SU i.
Interference constraints. According to the CR paradigm, SUs
are allowed to transmit provided that they do not induce “too
much” interference against the primary receivers. In this paper
we consider global interference constraints, in the general form
described next. Denoting by Bpi the effective channel from the
secondary transmitter i to the primary receiver p (this includes
the actual cross-channel Gpi and the filtering/beamforming

performed by the primary receiver), the interference covari-
ance matrix at PU is

∑I
i=1 BpiQiB

H
pi, leading to the follow-

ing metric of the overall interference experienced by PU p:∑I
i=1 tr

(
BpiQiB

H
pi

)
. Specific examples for Bpi include:

• Bpi = Gpi: the interference metric
∑I

i=1 tr
(
GpiQiG

H
pi

)
reduces to the aggregate interference generated by all SUs at
the primary receiver p [5, 7];
• Bpi = aHp (θ)Gpi, with ap(θ) being the spatial steer-

ing vector of angle θ [25]: the interference metric becomes∑I
i=1 a

H
p (θ)GpiQiG

H
piap(θ), which measures the interfer-

ence strength along a specific direction θ.
• Bpi = wH

p Gpi, with wp being the receive beam-
former of PU p: the interference metric reduces to∑I

i=1 w
H
p GpiQiG

H
piwp, which is the interference perceived

at the primary receiver p.
With a slight abuse of terminology, we will use the words

“channel” and “effective channel” interchangeably. An esti-
mate of the effective channel Bpi can be obtained at the
secondary transmitters using standard signal processing tech-
niques. A typical situation is when PUs adopt a time-division
duplex (TDD) strategy, and the SUs have a priori knowledge
of the PUs’ pilot symbols [6]. Note that, in a TDD mode,
the primary receiver p uses wp for both receive and transmit
beamformers, so Bpi = wH

p Gpi can be estimated by sensing
the pilots from the PU receivers as well.

In typical CR scenarios, however, the SU-to-PU (effective)
channels Bpi are difficult to estimate accurately. To model
inaccurate or limited SU-to-PU CSI, we express each channel
matrix Bpi as [12, 17–20]:

Bpi � B̂pi +ΔBpi, (3)

where B̂pi is the estimated channel at the secondary trans-
mitters, and ΔBpi quantifies the estimation error which takes
values from the so-called uncertainty region Upi:

Upi �
{
ΔBpi : tr

(
ΔBpiTpiΔBH

pi

) ≤ ε2pi
}

(4)

where εpi > 0 reflects the amount of uncertainty associated
with B̂pi, and Tpi is a given positive definite (weight) matrix.
Based on (4), a (worst-case) robust global interference con-
straint can be written as [26, 27]: for each PU p = 1, . . . , P ,∑I

i=1
φpi(Qi) ≤ Imax

p , (5a)

where
φpi(Qi) �

max
ΔBpi∈Upi

{
tr

(
(B̂pi +ΔBpi)Qi(B̂pi +ΔBpi)

H
)}

(5b)
represents the worst-case interference generated by SU i
to PU p, and Imax

p is the maximum level of interference
tolerable by PU p. Note that φpi(Qi) is a convex but non-
differentiable function of the covariance matrix Qi. Constraint
(5) is essentially semi-infinite because it has to be satisfied for
every ΔBpi in the compact set Upi.

Given the local constraint set Qi in (2) and the robust global
interference constraints (5), we define the joint feasible set Q
of all SUs as

Q �
{
(Qi)

I
i=1 :

Qi ∈ Qi, i = 1, . . . , I∑I
i=1 φpi(Qi) ≤ Imax

p , p = 1, . . . , P

}
,

(6)
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and we assume without loss of generality that Imax =
(Imax

p )Pp=1 > 0 (this implies that Q has a non-empty interior).
We remark that other interference constraints can also be

included and treated using the same methodology we are
going to introduce; examples are null constraints UH

i Qi =
0, and worst-case peak average interference constraint∑I

i=1 maxΔBpi∈Upi λmax((B̂pi +ΔBpi)Qi(B̂pi +ΔBpi)
H ).

B. Game-theoretical formulation

The first system design we propose is based on a robust
game-theoretical formulation: the SUs are modeled as players
of a NEP aiming at maximizing their own transmission rate (1)
subject to the power and robust global interference constraints
(2) and (5). To keep the system design as decentralized as pos-
sible, the robust global interference constraints are enforced by
introducing a pricing term in the objective function of each
SU: there is one price μp associated with each of the global
interference constraints; let us denote by μ � (μp)

P
p=1 the

vector of all prices. Stated in mathematical terms, we have the
following pricing-based NEP: anticipating the rival strategies
Q−i and the price μ, each SU i = 1, . . . , I solves

maximize
Qi

ri(Qi,Q−i)−
∑P

p=1 μp · φpi(Qi)

subject to Qi ∈ Qi.
(7a)

The game is completed with the robust global constraints to
be satisfied by the price vector μ:

0 ≤ μp ⊥ Imax
p −

∑I

i=1
φpi(Qi) ≥ 0, p = 1, . . . , P, (7b)

where a ⊥ b means a · b = 0. Condition (7b) says that the
robust global interference constraints must be satisfied together
with nonnegative pricing; in addition, they imply that if a
constraint is satisfied with strict inequality, the corresponding
price must be zero (the SUs are not punished if they already
satisfy the interference requirements).

Related Works. The proposed NEP differs from previous
game-theoretical formulations [11, 12, 28, 29] in several
aspects, namely: i) our design incorporates robust global
interference temperature constraints (in [28, 29] there are
no global constraints, and in [11] the global constraints
are nonrobust, whereas in [12] there are only local robust
interference constraints); ii) SU’s objective functions are non-
differentiable; iii) the pricing term is nonlinear in the optimiza-
tion variables (due to the worst-case nature); and iv) players’
optimization variables are complex matrices (in [11, 28, 29]
the optimization variables are real vectors, whereas in [12]
the problem can be conveniently written using real matrices).
Because of these issues, the NEP (7) is much more involved
and cannot be studied by a direct application of existing results
in [11, 12]. Section III addresses these technical issues and
provides a comprehensive treatment of the NEP in terms of
solution analysis and algorithms.

C. Social-oriented design

A complementary formulation to the game-theoretical de-
sign is the classical NUM problem, which is

maximize
Q1,...,QI

U(Q) �
∑I

i=1 ri(Qi,Q−i)

subject to Qi ∈ Qi, i = 1, . . . , I,∑I
i=1 φpi(Qi) ≤ Imax

p , p = 1, . . . , P.

(8)

Related Works. Instances of (8) have been widely studied in
the literature; relevant works dealing with local and/or global
interference constraints but under perfect SU-to-PU CSI are
[5, 8, 30]. In [7], the authors focused on the minimization
of the (nonconvex) sum-MSE subject to robust global inter-
ference constraints, and proposed centralized and distributed
schemes aiming at reaching stationary solutions of the prob-
lem. Convergence of the algorithms in [7] however remains
an open and challenging problem. In this paper, for the first
time, we propose a class of distributed convergent algorithms
to stationary solutions of (8). Interestingly, our algorithms and
convergence analysis apply also to the problems studied in [7].
This framework is developed in Section IV.

III. GAME-THEORETICAL DESIGN

The first step of our analysis is to get rid of the non-
differentiability of the SU’s utility function by rewriting (7)
in an equivalent but more convenient form. More specifically,
introducing the real slack variables ti � (tpi)

P
p=1 ≥ 0 and the

augmented (convex) feasible set

Q̃i � {(Qi, ti) : Qi ∈ Qi, φpi(Qi)− tpi ≤ 0, ∀ p} , (9)

the NEP (7a) can be rewritten as: for SU i = 1, . . . , I ,

Gμ :
maximize

Qi,ti
ri(Qi,Q−i)−

〈
μ, ti

〉
subject to (Qi, ti) ∈ Q̃i,

(10a)

along with the complementary condition

0 ≤ μp ⊥ Imax
p −

∑I

i=1
tpi ≥ 0, p = 1, . . . , P. (10b)

For future convenience, we will refer to the NEP in (10a)
with fixed (exogenous) price vector μ ≥ 0 as Gμ. With a
slight abuse of notation, we will denote the overall game Gμ
in (10a) plus the complementary condition (10b) by G. We
focus next on the solution analysis of G as well as the design
of distributed algorithms.

A. Solution analysis: connection to complex VIs

The definition of NE for a game with price equilibrium con-
ditions as G is the natural generalization of the same concept
introduced for standard NEPs (with no global constraints) and
is given next.

Definition 1 (NE of G). A Nash Equilibrium of the game G
in (10) is a strategy-price tuple (Q�, t�,μ�) such that

(Q�
i , t

�
i ) ∈ argmax

(Qi,ti)∈Q̃i

{
ri(Qi,Q

�
−i)−

〈
μ�, ti

〉}
, i = 1, . . . , I,

and

0 ≤ μ�
p ⊥ Imax

p −
∑I

i=1
t�pi ≥ 0, p = 1, . . . , P.
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Note that even though each SU’s optimization problem is
convex, the NEP may not have a NE; moreover standard
game-theoretical existence results cannot be applied because
of the unboundedness of the price vector (the prices cannot
be normalized due to the lack of homogeneity in the players’
optimization problem). To cope with these issues, we hinge
on the advanced framework of finite-dimensional VI [31].
Standard VIs are defined in the real domain [31], but the
players’ optimization variables in the game G are complex
matrices. Of course, one approach would be to rewrite the
SUs’ optimization problems in terms of real and imaginary
parts of the original complex variables. This is however awk-
ward because it “destroys” the structure of the optimization
problem, and leads to final conditions that cannot be easily
written in terms of the original complex setup. It seems instead
more convenient to work directly in the complex domain.
This naturally calls for the definition of the VI problem
in the domain of complex matrices; complex VIs and their
connection with standard complex NEP have been introduced
and studied in [21]. Capitalizing on [21], in the present
paper we extend (some of) those results to complex NEPs
with pricing and global constraints. We introduce next the
definition of complex VI; then we establish the connection
with the game G and study its main properties.

Definition 2 (Complex VI [21]). Given a convex and closed
set X ∈ C

n×m and a complex-valued matrix function
FC (X) : X � X→ Cn×m, the complex VI problem, denoted
by VI(X ,FC), consists in finding a point X� ∈ X such that〈

X−X�,FC(X�)
〉 ≥ 0, ∀X ∈ X , (11)

where 〈A,B〉 � � (
tr

(
AHB

))
.

If X and FC(X) are partitioned according to X = (Xi)
I
i=1

and FC(X) = (FC
i (X))Ii=1 [such that

〈
Xi,F

C
i (X)

〉
is defined

for all i = 1, . . . , I], the inner product in (11) is intended as∑I

i=1

〈
Xi −X�

i ,F
C

i (X
�)
〉 ≥ 0.

To establish the connection between a suitably defined
complex VI and the game G, let us recall the joint feasible
set Q defined in (6) and introduce the complex-valued matrix
mapping FC(Q) =

(
FC

i (Q)
)I
i=1

with

FC

i (Q) = −∇Q∗
i
ri(Qi,Q−i)

= −HH
ii

(
Rni +

∑I

j=1
HijQjH

H
ij

)−1

Hii,
(12)

where ∇Q∗
i
ri(Qi,Q−i) denotes the gradient of ri(Qi,Q−i)

with respect to (w.r.t.) Q∗
i (the conjugate of Qi); see, e.g.,

[21, 32]. Then we have the following.

Proposition 3. The complex game G in (10) is equivalent to
the complex VI(Q,FC). The equivalence is in the following
sense. If QVI = (QVI

i )Ii=1 is a solution of the VI(Q,FC), then
there exists a μVI � (μVIp )Pp=1−the multiplier of the VI asso-
ciated with the robust global interference constraint (5)−such
that (QVI, tVI,μVI) is a NE of G, with tVI � (tVIpi )p,i and
tVIpi = φpi(Q

VI
i ). Conversely, if (QNE, tNE,μNE) is a NE of G,

then tNEpi = φpi(Q
NE
i ) and QNE is a solution of the VI(Q,FC)

with μNE being the multiplier associated with the robust global
interference constraint (5).

The proof of the proposition comes from the equivalence of
the Karush-Kuhn-Tucker (KKT) conditions of G and those of
the VI(Q,FC). Note that Q in (6) has a non-empty interior,
so Slater’s constraint qualification is satisfied, see [31, Section
3.2]. We omit the details due to space limit.

The equivalence of the game G with the VI(Q,FC) paves
the way to the study of existence and uniqueness of a NE,
capitalizing on the solution analysis of complex VIs [21]. We
introduce the I × I matrix Υ:

[Υ]ij =

{
1, if i = j,

−ρ
(
H†H

ii HH
ijHijH

†
ii

)
· INNRij , if i �= j,

where Hii is assumed to be full column rank, A† is the Moore-
Penrose pseudoinverse of A, ρ(A) is the spectral radius of A,
and INNRij is defined as

INNRij �
ρ
(
Rni +

∑I
i=1 P

tot
i HijH

H
ij

)
λmin (Rni)

, (13)

the main existence/uniqueness result for the NE of G is the
following.

Proposition 4. The VI(Q,FC) always has a solution; there-
fore the game G has a NE. Moreover, if Υ � 0, the VI(Q,FC)
has a unique solution; therefore the (Q, t)-tuple of the NE of
G is unique.

Remark 5 (On the uniqueness conditions). A sufficient
condition for Υ to be positive definite is: for all i = 1, . . . , I,

1
2

∑
j �=i

{
ρ
(
H†H

ii HH
ijHijH

†
ii

)
· INNRij

}
+ 1

2

∑
j �=i

{
ρ
(
H†H

jj HH
jiHjiH

†
jj

)
· INNRji

}
< 1.

(14)

The condition is the standard diagonal dominance of (the
symmetric part of) Υ. Uniqueness conditions above have
an interesting physical interpretation: the NE is unique if
the interference among the SUs is “sufficiently small”. For
instance, the first sum in (14) can be interpreted as a constraint
on the maximum amount of interference that each secondary
receiver can tolerate [ρ(H†H

ii HH
ijHijH

†
ii) · INNRij is the

maximum amount of interference that SU i can experience
due to the transmissions of SU j], whereas the second sum
in (14) imposes an upper bound on the maximum interference
that each secondary transmitter can generate. Note that the
above conditions are independent of the price vector μ.

B. Distributed algorithms

The challenging goal of this subsection is to devise a
decentralized mechanism solving the game G. While useful
for the solution analysis, the VI reformulation of G (cf.
Proposition 3) does not help much in obtaining distributed
algorithms. This is due to the fact that the feasible set Q
of the VI [cf. (6)] does not have a Cartesian structure [cf.
(5)], leaving coupled the strategies of the players; therefore,
standard solution methods for the VI(Q,FC) as in [31] would
lead to centralized schemes, which are not applicable in our
CR scenario. To deal with this issue, we start rewriting the
game G as a Nonlinear Complementarity Problem (NCP).
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A Nonlinear Complementarity Reformulation. Let us focus
preliminarily on the NEP Gμ with exogenous (fixed) price
μ ≥ 0 [cf. (10a)] and assume that Gμ has a unique NE
for any given μ ≥ 0, denoted by (Q�(μ), t�(μ)) (we derive
conditions for the uniqueness in Proposition 6), where we have
made explicit the dependence on μ. Under this condition, let
us introduce the mapping:

M(μ) : RP
+ � μ �→M(μ) �

(
Imax
p −

∑I

i=1
t�pi(μ)

)P

p=1
,

(15)
which measures the violation of the robust global interference
constraints at the NE (Q�(μ), t�(μ)). It turns out that if μ
is such that the complementarity condition (10b) is satisfied,
that is 0 ≤ μ ⊥M(μ) ≥ 0, then (Q�(μ), t�(μ),μ) is a NE
of G. This is made formal in the following proposition.

Proposition 6. Given the game G, suppose that Υ is a P -
matrix. Then the following hold.

(a): Gμ has a unique NE, denoted by (Q�(μ), t�(μ)), for
any given μ ≥ 0;

(b): G is equivalent to the nonlinear complementary prob-
lem

NCP(M) : 0 ≤ μ ⊥M(μ) ≥ 0. (16)

The equivalence is in the following sense: the NCP(M)
must have a solution and, for any such solution μNCP, the
tuple (Q�(μNCP), t�(μNCP),μNCP) is a NE of G; conversely, if
(QNE, tNE,μNE) is a NE of G, then μNE is a solution of the
NCP(M) with (Q�(μNE), t�(μNE)) = (QNE, tNE);

(c): If the condition on Υ is strengthened to Υ �
0, then for any solution μNCP of NCP(M) we have
(Q�(μNCP), t�(μNCP)) = (QNE, tNE), where (QNE, tNE) is the
unique (Q, t)-component of the NE of G.

The difference between Proposition 6 (b) and (c) is that,
under the more stringent condition in (c), all the solutions μNCP

of the NCP(M) yield equilibrium pairs (Q�(μNCP), t�(μNCP))
of the game G having the same (Q, t)-component. In Propo-
sition 6 we invoked the P property of the matrix Υ; we refer
to [33] for a detailed treatment of P matrices. Here we recall
only that a matrix Υ is P if every principal minor of Υ is
positive. Note that every positive definite matrix is a P matrix,
but the reverse does not hold (unless the matrix is symmetric).
A sufficient condition for Υ to be P is that either the first or
the second sum in (14) is less than 1/2; see Remark 5 for a
physical interpretation of these conditions.

In the setting of Proposition 6, one can compute the NE
of G by solving the NCP(M), which offers the possibility
of devising distributed algorithms (the feasible set of the
NCP is the nonnegative orthant and thus has a Cartesian
structure), whose convergence can be studied using well-
known results from the theory of VIs. An example is the
Projection Algorithm with variable step-size [31, Chapter 12]
applied to the NCP(M) and formally described in Algorithm
1, where in (17) the symbol [•]+ denotes the (component-
wise) Euclidean projection onto the nonnegative orthant.

Convergence conditions of Algorithm 1 are given in the
next theorem, whose proof follows from [31, Th. 12.1.8] and
the co-coercivity properties of the mapping M(μ) on RP

+

(proved in Appendix A); the co-coercivity constant ccoc > 0

Algorithm 1 : Projection Algorithm with Variable Step-size
for the NCP(M) in (16)
Data: μ0 ≥ 0 and {γν}∞ν=0 > 0. Set ν = 0.
(S.1): If μν satisfies a suitable termination criterion: STOP.
(S.2): Compute the unique NE of Gμν in (10a).
(S.3): Update the price vector according to

μν+1 = [μν − γνM(μν)]+ . (17)

(S.4): ν ← ν + 1 and go back to (S.1).

in Theorem 7 is given by

ccoc =
csm∑K

k=1

(∑I
i=1 Lφ,pi

)2 , (18)

where csm = 1
2λmin(Υ + ΥT ) and Lφ,pi is the Lipschitz

constant of φpi(Qi), whose existence is well justified [34,
Th. 10.4] and given by

Lφ,pi =
(P tot

i + d(Qi))(εpi/λmin(Tpi) + d(Qi))σ
2
max(B̂pi)

d(Qi)2
,

(19)
where d(Qi) is the diameter of the smallest ball containing
the compact set Qi.

Theorem 7. Suppose that Υ � 0 and {γν}∞ν=0 is chosen so
that 0 < infν γ

ν ≤ γν ≤ supν γ
ν < 2ccoc. Then the sequence

{μν} generated by Algorithm 1 converges to a solution of the
NCP(M) in (16).

Remark 8 (On Algorithm 1). Algorithm 1 provides an up-
date rule for the price vector, guaranteeing convergence to a
solution of the NCP(M) and thus to a NE of the game G
(cf. Proposition 6). It is essentially a double-loop scheme. In
the inner loop (Step 2), given the price vector μν ≥ 0, the
SUs compute the unique NE of Gμν ; once a NE is reached,
the price vector μν is updated according to (17) in the outer
loop (Step 3); then the game Gμ is played again, but now
with μ = μν+1. The outer loop is terminated (Step 1) when
the price change in two consecutive iterations is smaller than
a (given) positive constant ε, e.g.,

∥∥μν+1 − μν
∥∥ ≤ ε. The

implementation of Algorithm 1 requires the computation of
the solution of the NE of Gμν in (10a). This can be done using
best-response schemes wherein the SUs, according to a given
scheduling (e.g., simultaneously or sequentially), solve their
optimization problems (10a), given μ = μν . The interesting
result is that conditions in Theorem 7 are sufficient also
for the convergence of this inner loop, under simultaneous,
sequential, or asynchronous updates from the SUs [21, 35, 36].
An instance of Step 2 when a Jacobi best-response iterate is
used to compute a NE of Gμν is given in Algorithm 2.

C. Discussion on the implementation

We discuss now some implementation issues related to
the proposed algorithms. As already observed in Remark 8,
Algorithm 1 is composed of two major steps: the computation
of the NE of the inner game Gμ (Step 2) and the update of
the price vector (Step 3). Then, some natural questions are:
i) Who will perform the update of the price vector in Step
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Algorithm 2: Algorithm 1 with inner Jacobi best-response
iterates.
The steps of the algorithm are the same as those of Algorithm
1, except for Step 2, which is modified as follows. Given
(Q0

i , t
0
i ) ∈ Q̃i, for all i = 1, . . . , I; μν ; δ > 0; set n = 0,

(S.2a): For each i = 1, . . . , I , compute (Qn+1
i , tn+1

i ) as(
Qn+1

i , tn+1
i

) ∈ argmax
(Qi,ti)∈Q̃i

ri(Qi,Q
n
−i)−

〈
μν , ti

〉
(20)

(S.2b): If
∥∥∥∑I

i=1 t
n+1
i −∑I

i=1 t
n
i

∥∥∥ ≤ δ, then STOP; other-
wise set n← n+ 1 and go to (S.2a).

3; ii) How to implement this update in a (fairly) distributed
way? iii) What is the convergence time and PU-to-SU/SU-to-
SU communication overhead of the two steps? iv) How can
the SUs compute efficiently their best-response in Step 2? We
discuss next different protocols to address these issues, each
of them characterized by a different level PU-to-SU and SU-
to-SU signaling and complexity.

1) PU-to-SU/SU-to-SU signaling and communication over-
head in Step 3: Depending on the debate paradigm assumed
for the CR network, spectrum leasing versus common model,
the price update in Step 3 can be performed either by the PUs
or by the SUs, as detailed next.

CR spectrum leasing model. In this setting, an interaction
between the PUs and SUs is allowed. It is thus natural that
the price update is performed by the PUs. This however
requires some explicit signaling between PUs and SUs: at
each iteration ν, each SU i needs to communicate his (scalar)
worst-case interference value tνpi to PU p, so that the PUs
can evaluate the function M(μν), update the price vector μ
according to (17), and broadcast the new value μν+1. Note
that the computation of the projection onto the nonnegative
orthant in (17) is a component-wise operation, implying that
each PU can update locally his own price performing a
computationally inexpensive operation. We remark that the
signaling and communication overhead of this scheme is lower
than that of state-of-the-art algorithms dealing with (robust)
global interference constraints, e.g., [5, 7], see Section IV-C.

CR common model. In this scenario the PUs are oblivious of
the presence of the SUs (e.g., the PUs are legacy systems), thus
behaving as if no secondary activities were present. Therefore,
the update of the price vector in Step 3 needs to be performed
by the SUs themselves. This can be done in different ways,
at the cost however of some signaling among the SUs and
computational complexity. A centralized approach would be to
elect a “sink” node in the secondary network that collects the
required information from the other SUs (using the network
control channel), updates and broadcasts the price vector μ.

An alternative method less demanding in terms of network
signaling is to estimate the violation function M(μ) locally
at each secondary node by running consensus algorithms,
which requires the interaction only between nearby nodes.
Consensus schemes have become popular over the last decade
as a practical scheme for the in-network distributed calculation
of general functions of the node values (see, e.g., [37, 38]);
here, we suggest to use the finite-time distributed convergence
linear scheme proposed in [39]. The main advantage of this

scheme w.r.t. the more classical consensus/gossip algorithms
whose convergence is only asymptotic (i.e., exact consensus
is not reached in a finite number of times) is that, at no extra
signaling, each node can immediately calculate the consensus
value after observing the evolution of its own value over a
finite number of iterations (specifically, upper bounded by
the size of the network). Therefore, starting from the local
information t�i (μ) (which is available at node i) and running
the algorithm in [39, Figures 1-2], each node i will converge
to the estimate of the sums

∑I
i=1 t

�
pi(μ) for all p = 1, . . . , P

[and thus the violation function M(μ)].
The communication cost incurred by this protocol can be

characterized as follows. Modeling the secondary network as
a directed graph, the consensus algorithm described in [39]
converges in at most τmax ≤ I −mini |Ni| + 1 iterations (a
tighter bound can be found in [39]), where |Ni| is the number
of neighbors of SU i (the nodes that interfere with node i),
also termed in-degree of node i. According to the consensus
algorithm, in each step, each SU i transmits a scalar value on
each outgoing edge (the outgoing edges from each node i link
the nodes associated with the SUs who receive interference
from SU i); since there are at most τmax − 1 runs, each SU
i will in principle have to transmit τmax · degout

i messages,
where degout

i is the out-degree of node i (i.e., the number of
SUs having SU i as interferer). Thanks to the broadcast nature
of the wireless channel, however, a single transmission of each
SU i will be equivalent to communicating a message along
each of degout

i outgoing edges, and thus each node would only
have to transmit τmax messages. Summing over all nodes in
the network, there will be I · τmax overall messages that have
to be transmitted to run the consensus protocol.

Finally we mention that there are some scenarios where
the PUs cannot communicate with the SUs but the primary
receivers have a fixed geographical location. Then it might
be possible to install some monitoring devices close to each
primary receiver having the functionality of cross-channel
estimation as well as price computation and broadcast. Note
that the uncertainty region (4) and the proposed robust opti-
mization model fits well into this situation, in which the cross-
channel between the monitoring devices and the SUs can only
represent an estimate of the real PU-to-SU channel.

2) On Step 2 and the computation of the best-response: A
natural question dealing with Step 2 of Algorithm 1 is how to
compute the NE of the inner game Gμ, given the price μ ≥ 0.
One can use best-response algorithms (e.g., Algorithm 2), as
already discussed in Remark 8. Note that once the price μ
is available at the secondary transmitters, the implementation
of such algorithms is distributed. Indeed, to compute his
best-response, each SU only needs to locally measure the
covariance matrix of the interference plus noise. Moreover
the asynchronous implementation of best-response algorithms
relaxes the requirements on the network synchronization: some
SUs are allowed to update their strategies more frequently than
others and even use outdated interference measurements.

The last issue left to discuss is the computation of the
SU’s best-response (20), given the price vector μ and the
covariance matrix R−i(Q−i). Since the maximum-value func-
tion φpi(Qi) in the feasible set makes the computation quite
difficult, we reformulate it as a linear matrix inequality (LMI)
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based on the so-called S-procedure [18]: φpi(Qi) ≤ tpi if and
only if there is a ηpi such that

ηpi ≥ 0 and Spi(Qi) � 0, (21a)

where

Spi(Qi) �

⎡⎢⎣ (ηpiTpi −Qi)
T ⊗ I −vec(B̂piQi)

−vec(B̂piQi)
H

tpi − ηpiε
2
pi

−tr(B̂piQiB̂
H
pi)

⎤⎥⎦ .

(21b)
Based on (21), each optimization problem (20) can be

rewritten in the following equivalent form:

maximize
Qi,ti,ηi

ri(Qi,Q−i)−
〈
μ, ti

〉
subject to Qi ∈ Qi, ηi ≥ 0,

Spi(Qi) � 0, p = 1, . . . , P,

(22)

with ηi � (ηpi)
I
i=1 being additional slack variables. This is a

tractable convex optimization problem, whose solution can be
obtained from many solvers, e.g., SeDuMi [41].

IV. SOCIAL-ORIENTED SUM-RATE MAXIMIZATION

The design of distributed solution methods for the sum-rate
maximization problem (8) confronts three major challenges,
namely: i) the nonconvexity of the sum-rate function; ii) the
lack of separability of the sum-rate function (the rate of each
SU depends also on the covariance matrices of the others); and
iii) the presence of coupling (semi-infinite) robust constraints,
and they make the optimization problem arduous to manage.
In this section, we propose for this problem a first class of
distributed algorithms with provable convergence.

Specifically, we follow a two-step procedure. First, we
cope with the nonconvexity and nonseparability of the sum-
rate function capitalizing on successive convex approximation
techniques recently proposed in [24]. More specifically, the
original nonconvex problem (8) is replaced by a suitably
defined sequence of convex subproblems, each of them having
a separable strongly convex function, but still with coupling
interference constraints. The unique solution of any of such
subproblems can be efficiently computed via centralized al-
gorithms; inexact solutions are also allowed without affecting
the overall convergence. Then, building on standard primal
and dual decomposition techniques, we propose two efficient
methods to solve the convex subproblems in a distributed way.

A. Centralized SCA-based algorithm

We start the discussion from an informal description of
the proposed solution method that sheds light on the core
idea of the novel decomposition technique and establishes the
connection with classical gradient-based ascent schemes.

A classical approach to solve the nonconvex problem
(8) would be using some well-known gradient-based ascent
schemes. A simple way to generate a feasible ascent direction
is for example using the conditional gradient method [42,
Sec. 2.2.2]: given the current iterate Qν = (Qν

i )
I
i=1, the next

feasible covariance matrix Qν+1 is given by

Qν+1 = Qν + γν
(
Q̄ν −Qν

)
(23)

where Q̄ν is a solution to the following convex problem:

Q̄ν ∈ argmax
Q∈Q

{∑I

i=1

〈
∇Q∗

i
U(Qν),Qi −Qν

i

〉}
, (24)

γν ∈ (0, 1] is the step-size of the algorithm, Q is defined in
(6), and ∇Q∗

i
U(Q) denotes the gradient of U(Q) w.r.t. Q∗.

Looking at (24), one infers that conditional gradient meth-
ods are based on solving a sequence of convex problems,
obtained by linearizing the whole utility function U(Q) around
Qν . This however does not exploit the structure of U(Q).
Since each transmission rate function ri(Qi,Q−i) in U(Q) is
a concave function in Qi, a better exploitation of this “partial”
concavity is to replace each linear term

〈∇Q�
i
U(Qν),Qi −

Q̄ν
i

〉
in (24) with a concave approximation of U(Q) at Qν

that leaves ri(Qi,Q−i) untouched and linearizes the other
(nonconcave) terms. A natural choice for this approximation
is then: given Qν = (Qν

i )
I
i=1,

Ũi(Qi;Q
ν) � ri(Qi,Q

ν
−i) + 〈Πi(Q

ν) ,Qi −Qν
i 〉

− τi
2

∥∥∥Qi −Qν
i

∥∥∥2, (25)

where Πi(Q
ν) is the linearization of the terms in U(Q) that

are not concave in Qi, that is

Πi(Q
ν) �

∑
j �=i
∇Q∗

i
rj(Q

ν) =
∑

j �=i
HH

jiR̃j(Q
ν)Hji,

(26)
where R̃j(Q) �

(
Rj(Q−j) +HH

jjQjHjj

)−1−Rj(Q−j)
−1,

and the last (quadratic) term in (25), with τi > 0, is a proximal
regularization, whose numerical benefits are well-known [35].
Therefore, Ũi(Q;Qν) is a strongly concave function in Qi

obtained by preserving the original concave part ri(Qi,Q−i)
in U(Q), while linearizing the nonconcave part

∑
j �=i rj(Q).

We denote by cτ > 0 the constant of uniformly strong
concavity of Ũ(•;Qν) on Q, for any Qν ∈ Q, i.e., cτ is
the smallest positive scalar such that〈

Q1 −Q2,∇Q∗Ũ(Q1;Q)−∇Q∗Ũ(Q2;Q)
〉

≤ − cτ
∥∥Q1 −Q2

∥∥, ∀Q1, Q2, Q ∈ Q. (27)

Note that cτ ≥ mini=1,...,I{τi}, and the equality is reached
when all channels {Hii}Ii=1 are column rank deficient.

Associated with each Ũi(Q;Qν) we can define the follow-
ing “best response” map that resembles (24): given Qν ,

Q � Qν �→ Q̂(Qν) �
argmax

Q∈Q

{
Ũ(Q;Q(n)) �

∑I
i=1 Ũi(Qi;Q

ν)
}
.

(28)

Note that Q̂(Qν) is always well-defined, since the problem in
(28) is strongly convex and it thus has a unique solution.

According to the above discussion, the proposed candidate
search direction at point Qν in (23) becomes Q̂(Qν) −Qν ,
which leads to the SCA-based algorithm formally described in
Algorithm 3. The challenging question now is whether such a
direction is still an ascent direction for the sum-rate function
U(Q) in (8) at Qν (as Q̄ν − Qν is in conditional gradient
methods), and how to choose the free parameters τi’s and γν’s
in order to guarantee convergence to a stationary solution of
the nonconvex problem (8). This is addressed in Theorem 9.
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Algorithm 3: Exact Centralized Robust Sum-Rate Maximiza-
tion Algorithm
Data: Q0

i ∈ Qi for i = 1, . . . , I; {γν} > 0, (τi)Ii=1 > 0; set
ν = 0;
(S.1): If Qν satisfies a termination criterion: STOP.
(S.2): Compute the best-response Q̂(Qν) solving (28);
(S.3): Set Qν+1 = Qν + γν(Q̂(Qν)−Qν).
(S.4): ν ← ν + 1 and go back to (S.1).

Theorem 9. Given the social problem (8), suppose that: i)
(τi)

I
i=1 > 01, and ii) the sequence {γν}∞ν=1 is chosen so that

γν ∈ (0, 1], γν → 0, and
∑

ν
γν = +∞. (29)

Then, either Algorithm 3 converges in a finite number of
iterations to a stationary point of (8), or every limit point
of the sequence {Qν} (at least one such a point exists) is
a stationary point of (8). Moreover, none of such points is a
local minimum of (8).

Proof: See Appendix B.

Remark 10 (On Algorithm 3). The algorithm implements a
novel convergent SCA decomposition: a stationary solution
of (8) is computed by solving a sequence of strongly con-
vex optimization problems in the form of (28). A suitable
termination criterion in Step 1 is |U(Qn) − U(Qn−1)| < ε,
where ε is the prescribed accuracy. The algorithm is expected
to perform better than classical gradient-based schemes (at
least in terms of convergence speed) at the cost of no extra
signaling, because the structure of the objective functions is
better preserved. We remark that this new decomposition is the
nontrivial generalization to nonconvex sum-utility problems
with coupling (convex) constraints of the technique proposed
in [24] for nonconvex problems with local constraints only.

Convergence of Algorithm 3 is guaranteed if the step-
size sequence satisfies the diminishing step-size rule (29). An
example of such a rule is: given γ0 = 1,

γν+1 = γν (1− αγν) , ν = 1, . . . , (30)

where α ∈ (0, 1) is a given constant; see [24] for other alter-
native rules. We remark that a constant step-size γν = γ can
also be used; convergence is guaranteed if γ is “sufficiently
small”. We omit the details because of space limit.

Discussion on the implementation. To be implemented,
Algorithm 3 needs a CR fusion center, collecting SU-to-SU
CSI (Hij)i,j , SU-to-PU imperfect estimates (B̂ij)i,j , and the
confident intervals (εpi)p,i [cf. (4)]. Once this information
is available, problem (28) can be solved in a centralized
fashion (Step 3 of Algorithm 3), and the solution of (8) is
then broadcast to the SUs. We can reduce the computational
complexity of Algorithm 3 by allowing inexact computations
of the best-response Q̂(Qν) in (28). The inexact version of
Algorithm 3 is given in Algorithm 4, and its convergence
conditions are stated in Theorem 11.

1If the channel Hii is full column rank, one can also choose τi = 0.

Algorithm 4 : Inexact Centralized Robust Sum-Rate Maxi-
mization Algorithm
Data: Q0

i ∈ Qi for i = 1, . . . , I; {γν} > 0, (τi)Ii=1 > 0; set
ν = 0;
(S.1): If Qν satisfies a termination criterion: STOP.
(S.2): Find Zν such that

∥∥Zν − Q̂(Qν)
∥∥ ≤ εν ;

(S.3): Set Qν+1 = Qν + γν (Zν −Qν) .
(S.4): ν ← ν + 1 and go back to (S.1).

Theorem 11. Let {Qν} be the sequence generated by Al-
gorithm 4, under the setting of Theorem 9. Suppose that the
sequences {γν} and {εν} satisfy the following conditions: i)
γν ∈ (0, 1]; ii) γν → 0; iii)

∑
ν γ

ν = +∞; iv)
∑

ν (γ
ν)

2
<

+∞; and v)
∑

ν ε
ν
i γ

ν < +∞ for all i = 1, . . . , I . Then,
either Algorithm 4 converges in a finite number of iterations
to a stationary point of (8), or every limit point of {Qν} (at
least one such a point exists) is a stationary point of (8).

Proof: See Appendix B.
In Algorithm 4, each subproblem (28) is solved within the

accuracy ενi (cf. Step 2). As expected, in the presence of errors,
convergence is guaranteed if the sequence of approximated
subproblems are solved within an increasing accuracy. Note
that, in addition to requiring ενi → 0, condition v) of Theorem
11 imposes also a constraint on the rate ενi goes to zero, which
depends on the decreasing rate of {γν}. An example of error
sequence satisfying condition v) is ενi ≤ βi γ

ν , where βi is
any finite positive constant. Besides, the step-size rule (30)
satisfies the summability condition iv).

To alleviate the heavy communication overhead associated
with the (centralized) implementation of Algorithms 3 and 4,
it is desirable to obtain a distributed version of these schemes.
Interestingly, the proposed decomposition technique lends
itself to a distributed optimization procedure that can be imple-
mented in an on-line fashion. Indeed, the additive structure in
both the approximation function Ũ(Q;Q(n)) and the coupling
constraints [see (5)] is suitable for a parallel decomposition
of each subproblem (28) across the SUs; this can be obtained
using standard primal or dual decomposition techniques, while
preserving the convergence of the algorithms. Note that this
is possible because each of the subproblems (28) is convex
(e.g., under Slater’s constraint qualification, we have strong
duality). This is a major departure from previous works in the
literature using SCA-based techniques (see, e.g., [5, 7]), where
the lack of convexity and strong duality does not guarantee the
convergence of the developed solution schemes. The proposed
primal and dual distributed implementations of Step 2 of
Algorithm 3 (and Algorithm 4) are described in the next two
subsections.

B. Distributed dual-decomposition-based algorithms

The subproblem (28) can be solved in a distributed manner
if the coupling constraints are relaxed into the Lagrangian (see,
e.g., [23]). We rewrite (28) as

maximize
(Qi,ti)Ii=1

∑I
i=1 Ũi(Q;Qν)

subject to (Qi, ti) ∈ Q̃i, i = 1, . . . , I,∑I
i=1 tpi ≤ Imax

p , p = 1, . . . , P,

(31)
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with Q̃i defined in (9). The dual problem of (31) is

minimize
μ≥0

D(μ;Qν), (32)

where
D(μ;Qν) �

max
(Qi,ti)∈Q̃i

{
I∑

i=1

(
Ũi(Qi;Q

ν)− 〈
μ, ti

〉)}
+

〈
μ, Imax

〉
(33)

and Imax � (Imax
p )Pp=1. Note that strong duality holds for (31)

[and thus (28)]. We can then focus on the dual formulation
(32), which is suitable for a distributed implementation be-
cause the maximization in (33) can be performed in parallel
by the SUs while the optimization problem for each SU is
a tractable convex optimization problem [the semi-infinite
constraint φpi(Qi) ≤ ti can be reformulated as a LMI (21)].

The next lemma summarizes some desirable properties of
the dual function D(μ;Qν), where (Q�(μ;Qν), t�(μ;Qν))
denotes the unique solution of the inner maximization in (33),
for a given μ ≥ 0 and Qν . The proof of the lemma follows the
same line of analysis as in Appendix A, and thus is omitted.

Lemma 12. The dual function D(μ;Qν) is differentiable on
RP

+, with gradient

∇μD(μ;Qν) =
∑I

i=1
t�i (μ;Q

ν)− Imax.

The gradient∇μD(μ;Qν) is Lipschitz continuous on RP
+ with

Lipschitz constant L∇D, given by

L∇D =
cτ∑P

p=1

(∑I
i=1 Lφ,pi

)2 (34)

with Lφ,pi defined in (19) and cτ defined in (27).

The dual problem can be solved, e.g., using well-known
gradient algorithms; an instance is given in Algorithm 5,
whose convergence is stated in Theorem 13. The proof of the
theorem follows from Lemma 12 and standard convergence
results of gradient projection algorithms [43].

Algorithm 5: Dual-based Distributed Implementation of Step
2 of Algorithm 3
Data: μ0 ≥ 0, Qν , {sn}∞n=0; set n = 0.
(S.2a): If μn satisfies a suitable termination criterion: STOP.
(S.2b): The SUs solve in parallel the following optimization
problems: for all i = 1, . . . , I ,

maximize
(Qi,ti)∈Q̃i

Ũi(Qi;Q
ν)− 〈

μn, ti
〉

(35)

(S.2c): Update μ according to

μn+1
p =

[
μn
p + sn

(∑I

i=1
t�pi (μ

n;Qν)− Imax
p

)]+
, ∀ p.

(36)
(S.2d): n← n+ 1 and go back to (S.2a).

Theorem 13. Given the dual problem (32), suppose that the
step-size sequence {sn}∞n=0 satisfies one of the following two
conditions:

(a) : 0 < sn = s < 2/L∇D,

(b) : sn → 0,
∑

n s
n =∞,

∑
n (s

n)
2
<∞.

(37)

Then, the sequence {μn} generated by Algorithm 5 converges
to a solution of (32).

Remark 14 (On Algorithm 5). The price update in (36) is
computational inexpensive and can be performed in parallel
among PUs. Note that a step-size rule satisfying condition
(b) in Theorem 13 is the one in (30), but with an arbitrary
s0 > 0 and any α ∈ (0, 1/s0). When there is only one PU
(i.e., P = 1), the gradient projection update in (36) can be
replaced by a bisection search, which in general converges
quite fast. When there are multiple PUs, the potential slow
convergence of the gradient update can be alleviated using
accelerated gradient-based update; we omit the details because
of space limit, see, e.g., [44]. A last remark is to observe that
the size of the dual problem is equal to the number P of
the PUs, but independent of the number of SUs. This makes
Algorithm 5 scalable with the number of SUs.

Algorithm 5 can also be used to implement (Step 2 of)
Algorithm 4 in a distributed way. To do that, the only issue to
discuss is how to choose the termination criterion in Step 2a of
Algorithm 5 so that the desired accuracy εν is reached in Step
2 of Algorithm 4, that is

∥∥Zν − Q̂(Qν)
∥∥ ≤ εν . Recalling

the definition of Q̂(Qν) in (28) and using the saddle-point
connection Q̂(Qν) = Q�(μ�;Qν) [μ� is an optimal solution
of (32)], it is not difficult to show that (see Appendix A for a
similar line of analysis):∥∥Q�(μ)− Q̂(Qν)

∥∥ ≤√
L∇D

cτ
‖μ− μ�‖ . (38)

It turns out that terminating Step 2 of Algorithm 5 when the
following accuracy in the price variable μ is reached

‖μn − μ�‖ ≤
√

cτ
L∇D

∑I

i=1
(ενi )

2 (39)

guarantees that
∥∥Zν−Q̂(Qν)

∥∥ ≤ εν is satisfied. Interestingly,
under the linear independence constraint qualification (LICQ)
of (31) at Q̂(Qν) [31, Sec. 3.2], i.e., the gradient of the active
robust global interference constraints are linearly independent
at Q̂(Qν), the dual optimal variable μ� is unique, and condi-
tion (39) can be forced in a distributed way by using classical
error bound results in convex analysis; see, e.g., Propositions
6.2.1 and 6.3.3 of [31]. We omit further details because of
space limit.
Remark 15 (On the LICQ of (31)). When the channels B̂pi are
known with no error, φpi(Qi) is differentiable and the LICQ
of (31) holds if the following matrix is full row rank:[

vec
(
I⊗ (B̂H

p1B̂p1)
)

. . . vec
(
I⊗ (B̂H

pIB̂pI)
)]

, p ∈ Iν ,

where Iν �
{
p :

∑I
i=1 φpi(Q̂i(Q

ν)) = Imax
p

}
, i.e., Iν is

the set of active global interference constraints. This can be
satisfied almost surely if P ≤ ∑

i n
2
Ti

(since the channels
B̂pi are independent), which is generally true in practice (the
number of SUs is much larger than the number of PUs). When
the channels are imperfect and φpi(Qi) is non-differentiable,
one can work on the alternative (differentiable) formulation
by rewriting the non-differentiable semi-infinite constraint
φpi(Qi) ≤ tpi as a linear generalized inequality constraint
(21), whose LICQ can be formulated based on the line of
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analysis given in [45, Sec. 5.3]; we omit the details because
of space limit.

Discussion on the implementation. Combining Algorithm
5 with Algorithm 3 or Algorithm 4, we obtain a distributed
double-loop scheme converging to a stationary solution of
the nonconvex social problem (8). The inner loop deals
with the update of the price variables (Algorithm 5): given
Qν = (Qν

i )
I
i=1, (Πi(Q

ν))
I
i=1, and μn = (μn

p )
P
p=1, at each

iteration n, the SUs solve in parallel their strongly convex
optimization problems (35), resulting in the optimal solution
(Q�

i (μ
n;Qν), t�i (μ

n;Qν))Ii=1. Note that based on (21) (and
similar to (22)), (35) can be transformed into a tractable form
amenable for many solvers like SeDuMi [41]. Once the new
values

∑I
i=1 t

�
pi(μ

n;Qν) are available, the new price μn+1
p

can be computed by an inexpensive projection onto R+. In the
outer loop, which happens once the inner loop price sequence
{μn} has reached convergence (within the desired accuracy),
one just updates the covariance matrices Qν

i according to
Qν+1

i = Q�
i (μ

∞;Qν), where μ∞ is the limit point of
{μn}. Overall, the algorithm can be interpreted as a single-
scale scheme: the prices are kept being updated according to
(36) [which requires the SUs keep solving their optimization
problems (35)], and “from time to time” [more precisely when
the accuracy in the inner loop is reached, e.g., (39) is satisfied]
the objective functions in the SUs optimization problems (35)
are changed by updating the pricing matrices (Πi(Q

ν))
I
i=1

and the regularization terms (
∥∥Qi −Qν

i

∥∥2)Ii=1.
The natural candidates for updating the prices (the inner

loop) are the PUs, after receiving the worst-case interference
values t�pi(μ

n;Qν) from the SUs. The SUs take care implicitly
of the outer loop solving in parallel the convex optimization
problems (35). In CR scenarios where the PU cannot partic-
ipate in the updating process, the SUs can perform also the
operations in the inner loop, at the cost of more signaling,
e.g., using consensus algorithms; the implementation solutions
proposed in Section III-C apply also to Algorithm 5.

As far as the communication overhead is concerned, the
same remarks we have made for the algorithms in Section
III-C apply here. The only difference is that now, in order to
solve (35), each SU i needs to exchange some extra signaling
to estimate the (pricing) matrix Πi(Q), which can be obtained
from the neighboring links via local message passing. This
leads to an extra O(I2nR) amount of message exchange
per-iteration w.r.t. the game-theoretical solution methods in
Section III-B, where nR is the number of receive antennas (as-
sumed here equal for all the receivers). This extra communica-
tion overhead however comes in favor of better performance;
we numerically compare the proposed game-theoretical and
social-oriented algorithms (in terms of achievable sum-rate) in
Section V, sheding light on the achievable trade-off between
performance and signaling.

As a final remark note that, since Algorithm 5 is based
on relaxation of the coupling interference constraints into the
Lagrangian, it may happen that these constraints are violated
by the transmit covariance matrices during the intermediate
iterations. This issue can be alleviated in practice by choosing
a “large” μ0 as the initial price. In the next subsection, we
propose an alternative distributed scheme which does not

suffer from this issue; we cope with the coupling interference
constraints using a primal-based decomposition.

C. Distributed primal-decomposition-based algorithms

In this section we provide a primal-based decomposition for
problem (28) in Step 2 of Algorithm 3. This scheme is suitable
for an on-line implementation, because the global interference
constraints are satisfied during all network operations.

We start rewriting (28) into the following equivalent form
by introducing the slack variables (κpi)p,i:

maximize
{Qi,ti,κi}

∑I
i=1 Ũi(Qi;Q

ν)

subject to (Qi, ti) ∈ Q̃i, i = 1, . . . , I,

tpi ≤ κpi, i = 1, . . . , I, p = 1, . . . , P,∑I
i=1 κpi ≤ Imax

p , p = 1, . . . , P,

(40)

where κpi can be interpreted as the interference budget as-
signed by PU p to SU i. When κ is fixed2, (40) can be
decoupled across the SUs, each of them solving

maximize
Qi

Ũi(Qi;Q
ν)

subject to (Qi, ti) ∈ Q̃i,

tpi
λpi(κpi;Q

ν)

≤ κpi, p = 1, . . . , P,

(41)

where λpi(κpi;Q
ν) is the dual variable associated with the

inequality constraint tpi ≤ κpi. It is easy to verify that strong
duality holds for (41) for any κpi ≥ 0, so the existence
of λpi(κpi;Q

ν) is guaranteed [46, Sec. 9.1.3, Th. 4], but
λpi(κpi;Q

ν) is generally not unique (e.g., this happens when
κpi = 0). We recall that (41) is a tractable convex optimization
problem because the semi-infinite constraint φpi(Qi) ≤ tpi
can be reformulated as a LMI constraint, see (21).

Given κi, the unique solution of (41) is denoted as
Q�

i (κi;Q
ν). Then the remaining issue is to find the optimal

interference budget κ� such that the sum-rate in (40) is max-
imized. This is equivalent to the following so-called master
(convex) problem [23, 47]:

maximize
κ

g(κ;Qν) �
∑I

i=1 Ũi (Q
�
i (κi;Q

ν))

subject to
∑I

i=1 κpi ≤ Imax
p , p = 1, . . . , P.

(42)

Due to the non-uniqueness of λpi(κpi;Q
ν), the objective func-

tion in (42) is non-differentiable; problem (42) can be solved
by subgradient projection methods [23], and a subgradient of
g(κ;Qν) at κ = κn is

∂κpig(κ
n;Qν) = λpi(κ

n
pi;Q

ν), ∀ p, i.
The subgradient projection method solving (42) is summarized
in Algorithm 6, whose convergence properties are given in
Theorem 16; the proof follows from standard convergence re-
sults of subgradient algorithms [43, Prop. 8.2.6]. Note that the
operator ΠSp(x) in Step 2c) of (43) denotes the Euclidean pro-
jection of x onto the simplex Sp �

{
x : x ≥ 0,1Tx ≤ Imax

p

}
(1 is a column vector with all entries equal to 1).

2With a slight abuse of notation, we will use the same symbol κ to
denote two different rearrangements of the components κpi, namely: i)
κ = (κi)

I
i=1, where by κi we will mean κi � (κpi)

P
p=1; and ii)

κ = (κp)Pp=1, where by κp we will mean κp � (κpi)
I
i=1.



2476 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 11, NOVEMBER 2013

Algorithm 6 : Primal-based Distributed Implementation of
Step 2 of Algorithm 3
Data: κ0 ≥ 0, Qν , {sn}∞n=0; set n = 0.
(S.2a): If κn satisfies a suitable termination criterion: STOP.
(S.2b): The SUs solve in parallel the following optimization
problems: for all i = 1, . . . , I ,

maximize
Qi,ti

Ũi(Qi;Q
ν)

subject to (Qi, ti) ∈ Q̃i,

tpi
λpi(κ

n
pi;Q

ν)

≤ κn
pi, p = 1, . . . , P,

(S.2c): Given λp(κ
n
p ;Q

ν) � (λpi(κ
n
pi;Q

ν))Ii=1, update
κp � (κpi)

I
i=1 according to

κn+1
p = ΠSp

(
κn
p + snλp(κ

n
p ;Q

ν)
)
, ∀ p = 1, . . . , P, (43)

(S.2d): n← n+ 1 and go back to (S.2a).

Theorem 16. Suppose that the step-size sequence {sn}∞n=0

satisfies condition (b) in Theorem 13 [cf. (37)]. Then the
sequence {κn} generated by Algorithm 6 converges to an
optimal solution of (42).

Remark 17 (On Algorithm 6). The projection onto the simplex
Sp in (43) has a closed-form solution (up to an unknown scalar
which can be found by bisection) [47, Lemma 1], and thus can
be performed efficiently. The projection also lends the primal
decomposition method suitable for an on-line implementation:
the robust global interference constraints are always satisfied
at each immediate iteration of Algorithm 6.

Discussion on the implementation. Combining Algorithm 6
with Algorithm 3, we obtain a distributed double-loop scheme
converging to a stationary solution of the nonconvex social
problem (8). The inner loop deals with the update of the inter-
ference budget variables (Algorithm 6): given Qν = (Qν

i )
I
i=1,

(Πi(Q
ν))Ii=1, and κn, at each iteration n, the SUs solve

in parallel their strongly convex optimization problems (41),
resulting in the optimal solution (Q�

i (κ
n
i ;Q

ν), t�i (κ
n
i ;Q

ν))
and Lagrange multipliers λi = (λpi(κ

n
pi;Q

ν))Pp=1. Then each
SU i passes λ∗

pi(κ
n
pi;Q

ν) to PU p, who will compute the
new interference budget κn+1

p = (κn+1
pi )Ii=1 by performing an

inexpensive projection onto a simplex [cf. Remark 17]. After
the inner loop converges, one just updates in the outer loop the
covariance matrices Qi according to Qν+1

i = Q�
i (κ

∞
i ;Qν),

where κ∞ is the limit point of {κn}. Similar to the dual-
based scheme (Algorithm 5), the primal-based implementation
can also be interpreted as a single-scale scheme with the only
difference that the PUs keep updating the interference budgets
κ rather than the prices μ; the discussion on implementation
issues of Algorithm 5 applies thus also to Algorithm 6, see
Section IV-B.

As a final remark, note that in the primal-based scheme,
the interference budget κpi set by PU p for SU i may be
different from other SUs. This is a major difference with the
dual-based implementation in Section IV-B and the game-
theoretical schemes in Section III, where each PU p sets
an equal price μp to all SUs. As a result, the PU-to-SU
signaling necessary to implement Algorithm 6 is heavier than

the one required for Algorithm 5. Interestingly, the signaling
in Algorithm 6 is at the same level of state-of-the-art dealing
with (robust) interference constraints [5, 7]. Moreover, due
to the larger dimension of κ (which is P · I) and lack
of differentiability of g(κ;Qν) in the master problem (42),
Algorithm 6 is expected to be slower than Algorithm 5 (which
solves a P -dimensional differentiable problem using a gradient
projection method). These are the prices to pay for having
the interference constraints satisfied at each (intermediate)
iteration of the Algorithm 6. A numerical comparison of
Algorithms 5 and 6 is given in Section V.

V. NUMERICAL RESULTS

In this section we run some numerical tests to show the
benefits provided by the proposed framework. We consider
a cellular system composed of one base station, the PU (i.e.,
P = 1, so Imax

p and Imax are used interchangeably), and mul-
tiple secondary links (whose number varies from one figure to
another). The PU is equipped with 4 receive antennas, while
the SUs have 4 transmit and 4 receive antennas. We assume
equal power budget P tot

i = P tot and white Gaussian noise
with variance σ2

i = σ2 for all the SUs; the SNR of each SU
is then snr � P tot/σ2. The distance between each secondary
transmitter and receiver is set to one (so that the strengths
of direct channels {Hii}Ii=1 are comparable), whereas we
consider different (normalized) inter-pair distances between
the secondary transmitters and receiver, which provides a
simple way to control the coupling among the SUs. The
(normalized) path loss between each secondary transmitter
and the PU is given by d−α, where d is the relative distance
between the secondary transmitter and the base station; we set
d = 10 and α = 3. We consider spherical uncertainty regions,
i.e., Tpi = I, and εpi = 0.1 · ∥∥Ĝpi

∥∥.

A. Robust system design and worst-case interference
In this experiment, we compare the proposed robust global

design [Algorithm 1] (termed as “robust-global”) with the
nonrobust global design [Algorithm 1 with εpi = 0 in (4)]
(termed as “nonrobust-global”). As a benchmark, we have also
simulated the classical iterative waterfilling algorithm (IWFA)
[15], which does not consider any interference constraints. The
secondary network is composed of 4 SUs, each with snr = 10
dB, and the global interference limit is set to be Imax = 0.03.
In Figure 2, we plot the worst-case interference

∑I
i=1 t

�
pi(μ

ν)
obtained by Algorithm 1 versus the iteration index ν. The
worst-case interference in the nonrobust-global version of the
algorithm is estimated using the largest interference observed
by randomly generating 1000 channel realizations in the
uncertainty region.

Figure 2 shows that the proposed “robust-global” based on
Algorithm 1 (marker of triangle) converges quite fast (in a few
iterations) while satisfying the global interference temperature
constraints. On the contrary, nonrobust designs such as the
global nonrobust version of Algorithm 1 (“nonrobust-global”,
marker of triangle) and the IWFA (marker of plus) result in a
violation of the interference constraint, and a possible degra-
dation in the licensed PUs’ performance. This consolidates
the necessity of a robust system design to deal with channel
uncertainties.



YANG et al.: ROBUST MIMO COGNITIVE RADIO SYSTEMS UNDER INTERFERENCE TEMPERATURE CONSTRAINTS 2477

2 4 6 8 10 12 14 16 18 20
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iteration

W
or

st
−

C
as

e 
In

te
rf

er
en

ce

 

 
Classical Nonrobust Design (IWFA) [16]
Nonrobust−Global Design (an instance of proposed scheme)
Robust−Global Design (proposed scheme)

worst−case interference limit

Fig. 2. Worst-case interference
∑I

i=1 t
�
pi(μ

ν) versus iteration number ν in
Algorithm 1 for robust and nonrobust formulation.

B. Game-theoretical versus social-oriented designs

In this example, we compare the achievable sum-rate by the
two proposed alternative designs: the game-theoretical and the
social-oriented ones; we also contrast our schemes with state-
of-the-art algorithms in literature for similar problems [7, 12,
24]. We consider a secondary network composed of 8 SUs,
each with snr=5 dB, and compare the following algorithms
in Figure 3: i) Algorithm 1 (termed as “game-global”); ii) Al-
gorithm 3 (termed as “social-global”); iii) the state-of-the-art
block coordinate ascent algorithm (termed as “BCA-global”)
proposed in [7], minimizing the sum-MSE subject to robust
global interference constraints; iv) the algorithm proposed in
[12] (termed as “game-local”), solving the rate-maximization
game subject to robust local interference constraints; and v)
the “social-local” where robust local interference constraints
φpi(Qi) ≤ Imax

p /I are considered and the sum-rate can be
calculated using the methodology of [24]. Note that “social-
local” is a particular instance of (28) by replacing the robust
global interference constraints

∑I
i=1 φpi(Qi) ≤ Imax

p with
robust local interference constraints φpi(Qi) ≤ Imax

p /I .
We also consider the so-called “game-conservative-local” and
“social-conservative-local” instances, and they correspond to
the scenario in which there are only local interference con-
straints but the number of SUs I is unknown; in such a case, a
conservative estimate on the number of SUs Ī(= 20 ≥ I = 8)
is used, resulting in conservative robust local interference
constraints φpi(Qi) ≤ Imax

p /Ī ≤ Imax
p /I .

Global vs local interference constraints: Figure 3 shows
that both game-theoretical and social-oriented designs under
global interference constraints (“game-global” and “social-
global”) outperform those based on local interference con-
straints (“game-local” and “social-local”). This is because
global interference constraints provide more flexibility than lo-
cal constraints to the SUs in satisfying the PUs’ requirements.
The performance gap between these two approaches becomes
even more significant when the exact number of the SUs is
not known; indeed in such a case, Ī may be much larger than
the real I , leading to even more restrictive local interference
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Fig. 3. Sum-rate of all SUs
∑I

i=1 ri(Q) at a NE/socially optimal solution
versus interference limit Imax.

constraints φpi(Qi) ≤ Imax
p /Ī � Imax

p /I . This issue is clear
comparing the sum-rate performance achievable by the “game-
local” and “social-local” designs with “game-conservative-
local” and “social-conservative-local”, respectively. Of course
the better performance using global interference constraints
comes at the cost of extra (albeit limited) signaling among
the SUs (see Section IV-B and Section IV-C for a detailed
discussion on this).

Comparison with state-of-the-art algorithms: Figure 3
clearly shows that the proposed algorithm “social-global”
outperforms the “BCA-global” [7] over all interference limit;
the sum-rate gain of our scheme goes from 7.5% to 10%
over the simulated range of the interference constraints. We
also remark that “BCA-global” is of a Gauss-Seidel type (i.e.,
the updates of the SUs’ strategies occur sequentially), which
may incur a large delay when the number of SUs is large.
In contrast, the proposed algorithm is based on simultaneous
update among the SUs, which makes it much more scalable.

How good is the NE? The last issue to address is quantifying
the quality of the NE in terms of achievable sum-rate. From
Figure 3, one can see that, as expected, the social-oriented
design outperforms the game-theoretical design, but the gap
is limited up to 10%, which happens when the interference
constraints are the dominant constraints. We recall that better
performance is at the cost of more signaling. Figure 3 thus
provides an indication on the signaling/performance tradeoff.

C. Convergence of robust sum-rate maximization algorithm

In this experiment, we show the convergence of the exact
centralized robust sum-rate maximization algorithm [Algo-
rithm 3]. We consider a CR network composed of 4 (dotted
curves) or 8 SUs (solid curves), each SU with three snr: 0
dB (marker of square), 10 dB (marker of triangle), and 20
dB (marker of circle). In Figure 4 we plot the sum-rate of
the SUs

∑I
i=1 ri(Q

ν) versus the iteration index ν; the initial
point is set to Q0

i = 0 for all i = 1, . . . , I and stepsize
γν+1 = γν(1− 10−5γν) with γ0 = 1. Figure 4 clearly shows
the (asymptotic) ascent property of the proposed algorithm: the
sum-rate is increased after each of the simultaneous update of



2478 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 11, NOVEMBER 2013

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

Iteration

S
um

−
R

at
e 

(b
its

/c
u)

 

 

0dB (8SU)
10dB (8SU)
20dB (8SU)
0dB (4SU)
10dB (4SU)
20dB (4SU)

Fig. 4. Convergence of Algorithm 3: Sum-rate of all SUs
∑I

i=1 ri(Q
ν)

versus iteration number ν with Q0
i = 0 for all i = 1, . . . , I .

all SUs. The convergence speed is reasonable fast (less than
10 iterations). More importantly, in the simulated scenarios, it
seems that the convergence speed is not affected much by the
number of SUs (compare the curves with the same marker),
which makes the algorithm scalable and applicable in large-
scale CR networks.

D. Distributed implementation: convergence of primal and
dual decomposition schemes

In this experiment, we compare the convergence of dual
decomposition [cf. Algorithm 5] and primal decomposition
scheme [cf. Algorithm 6] under different stepsize rules, and
we plot in Figure 6 the metric

∥∥Qn(Qν)−Qν+1
∥∥/∥∥Qν+1

∥∥
versus iteration number n for a given Qν , where Qn(Qν) =
Q�(μn;Qν) and Qn(Qν) = Q�(κn;Qν) in the context
of dual decomposition and primal decomposition, respec-
tively; Qν+1 = Q�(μ∞;Qν) = Q�(κ∞;Qν) and it can
be obtained by applying the centralized solver SeDuMi to
(28). In particular, “dual-constant”, “dual-diminishing”, and
“dual-bisection” refers to dual decomposition method with
a constant stepsize rule (sn = 500), a diminishing stepsize
rule (sn+1 = sn(1 − 10−4sn) with s0 = 500), and the
bisection method, respectively. “Primal-diminishing” refers to
primal decomposition method with a diminishing stepsize rule
(sn+1 = sn(1− 0.5sn) with s0 = 1).

Figure 6 shows that dual decomposition schemes (under dif-
ferent step-size rules) always converge faster than the primal
decomposition schemes. This is because the dual problem is
differentiable with a Lipschitz continuous gradient and thus it
can be solved by gradient projection method with a constant
step-size, and the dual variable has a smaller dimension than
the interference budget variable. More specifically, 1) “dual-
constant” performs better than “dual-diminishing” because
the step-size is constant in “dual-constant” which is however
diminishing in “dual-diminishing”; 2) under the same step-
size rule, “dual-diminishing” performs better than “primal-
diminishing” because the dimension of dual variable μ in
(31) is P while the dimension of interference budget κ in
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Fig. 5. Worst-case aggregate interference at the PU:
∑I

i=1 t
�
pi(μ

n;Qν)

in the dual-based Algorithm 5 and
∑I

i=1 κ
n
pi(Q

ν) in the primal-based
Algorithm 6 versus iteration number n for a given Qν .

(42) is P · I; 3) By comparing Figure 6 (a) and (b), we
see that the convergence speed of dual decomposition is
independent of the number of SUs, but the convergence of
primal decomposition is slower when the number of SUs is
doubled; 4) When there is only one PU, the dual variable is a
single scalar and it can be updated by bisection method, which
converges quite fast.

E. Worst-case interference of primal and dual decomposition

Even though dual schemes are faster than primal ones, they
do not guarantee that the interference constraints are always
satisfied while the algorithm in running, whereas primal algo-
rithms do. This is shown by the experiment in Figure 5, where
we plot the worst-case aggregate interference at the PU in each
iteration of the dual and primal decomposition. In particular,
we plot the metric

∑I
i=1 t

�
pi(μ

n;Qν) as generated by the dual-
based Algorithm 5 and

∑I
i=1 κ

n
pi(Q

ν) by the primal-based
Algorithm 6 versus the iteration index n, for a given Qν .
The number of SUs is 8, each with a snr =10 dB, and the
interference limit is Imax = 0.05. The stepsize parameters are
as same as those in Figure 6.

Figure 5 shows that, as expected, the worst-case aggre-
gate interference generated in each iteration by the primal
decomposition (blue dashed curve with plus) is always be-
low the interference limit. This is not necessarily true for
dual decomposition, because the robust global interference
constraints are relaxed into the Lagrangian function to trade
for parallel computation among the SUs. It can be observed
that the violation of the interference constraints is more likely
when the initial Lagrange multiplier μ0 is small, e.g., μ0 = 0
(see solid curves); this is because the penalty for interference
is small. However, as we have already remarked in Section
IV-B, this problem can be alleviated if one starts with a large
initial Lagrange multiplier μ0, corresponding to a large penalty
for interference. Indeed, the dotted curve shows that the worst-
case aggregate interference with a large μ0(=100) is always
below the interference limit.
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Fig. 6. Convergence of dual-based Algorithm 5 and primal-based Algorithm 6:
∥
∥Qn(Qν) − Q̂(Qν )

∥
∥/

∥
∥Q̂(Qν)

∥
∥ versus iteration number n for a given

Qν , where Qn(Qν) � Q�(μn;Qν) in Algorithm 5 and Qn(Qν) � Q�(κn;Qν) in Algorithm 6, and Q̂(Qν) is defined in (28).

VI. CONCLUSIONS

In this paper, we have considered the worst-case robust and
decentralized designs for CR systems with multiple primary
and secondary users over MIMO IC. We have proposed
two alternative approaches, namely: a game-theoretical and a
social-oriented approach. In the game-theoretical approach, the
CR network design is formulated as a pricing game with robust
global interference constraints in the form of a price clearing
condition. Building on the theory of complex VIs, we have
shown that the game always has an NE, and have proposed
distributed algorithms converging (under technical conditions)
to a NE of the game. To deal with the potential inefficiencies
of NE, we have considered the more classical social-oriented
optimization, where the nonconvex sum-rate of the SUs is
maximized subject to robust global interference constraints.
Building on the framework of successive convex approxima-
tion, we have proposed for the first time a class of distributed
SCA-based algorithms, based on primal/dual decomposition,
with provable convergence to stationary solutions. Overall, the
two complementary system designs differ in PU-to-SU and/or
SU-to-SU signaling, complexity, convergence speed, and sum-
rate performance, and are thus applicable to a variety of CR
scenarios, either cooperative or non-cooperative, offering a
tool to explore the trade-off between signaling and perfor-
mance.

APPENDIX A
THE CO-COERCIVITY OF M(μ)

The co-coercivity of M(μ) is stated in the following lemma.

Lemma 18. If Υ � 0, there exists a positive constant ccoc
given by (18) such that for any μ1, μ2 ≥ 0:〈
M(μ1)−M(μ2),μ1 − μ2

〉
≥ ccoc

∥∥M(μ1)−M(μ2)
∥∥2 .

Proof: Let (Q�(μ), t�(μ)) be the unique NE of Gμ, for
a given μ ≥ 0. Then, it follows from the variational principle

[21, Lemma 24] that: for all i = 1, . . . , I ,〈
Q�

i (μ
2)−Q�

i (μ
1),FC

i

(
Q�(μ1)

)〉
+

〈
t�i (μ

2)− t�i (μ
1),μ1

〉 ≥ 0,
(44a)

〈
Q�

i (μ
1)−Q�

i (μ
2),FC

i

(
Q�(μ2)

)〉
+

〈
t�i (μ

1)− t�i (μ
2),μ2

〉 ≥ 0,
(44b)

with FC
i (Q) defined in (12). Adding (44a) and (44b) we have〈
Q�

i (μ
1)−Q�

i (μ
2),FC

i

(
Q�(μ1)

)− FC

i

(
Q�(μ2)

)〉
≤ 〈−t�i (μ1) + t�i (μ

2),μ1 − μ2
〉
. (45)

Summing (45) over i and recalling the definition of M(μ),
we obtain:〈

M(μ1)−M(μ2),μ1 − μ2
〉

=
〈
−

∑I

i=1
t�i

(
μ1

)
+

∑I

i=1
t�i

(
μ2

)
,μ1 − μ2

〉
≥ 〈

Q�(μ1)−Q�(μ2),FC
(
Q�(μ1)

)− FC
(
Q�(μ2)

)〉
(46)

It is shown in [21, Prop. 38] that if Hii is full column rank
for all i and Υ � 0, FC(Q) is strongly monotone [21, Prop.
29] on Q: there exists a positive constant csm [cf. (18)] such
that 〈

Q�(μ1)−Q�(μ2),FC
(
Q�(μ1)

)− FC
(
Q�(μ2)

)〉
≥ csm

∥∥Q�(μ1)−Q�(μ2)
∥∥2 .

(47)

On the other hand, it follows from [34, Th. 10.4] that the
functions φpi(Qi) are Lipschitz continuous, i.e., there exist
positive constants Lφ,pi [cf. (19)] such that∥∥M(μ1)−M(μ2)

∥∥2
=

∑P

p=1

∥∥∥∑I

i=1

[
φpi

(
Q�

i (μ
1)
)− φpi

(
Q�

i (μ
2)
)]∥∥∥2

≤
[∑P

p=1

(∑I

i=1
Lφ,pi

)2
] ∥∥Q�(μ1)−Q�(μ2)

∥∥2 ,
(48)
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where in (48) we have also used the fact that∥∥Q�
i (μ

1)−Q�
i (μ

2)
∥∥ ≤ ∥∥Q�(μ1)−Q�(μ2)

∥∥.
Combining (46)-(48), we obtain the desired result〈

M(μ1)−M(μ2),μ1 − μ2
〉 ≥

csm∑P
p=1(

∑I
i=1 Lφ,pi)

2

∥∥M(μ1)−M(μ2)
∥∥2 ,

which completes the proof.

APPENDIX B
PROOF OF THEOREM 9 AND THEOREM 11

A key result to prove convergence of the SCA-based al-
gorithm is to show that the proposed new feasible direction
Q̂(Q) − Q is an ascent direction of U(Q) (cf. (8)) at Q.
This is proved in Proposition 19 below along with some other
properties of the best-response map Q̂(Q), instrumental to
prove Theorems 9 and 11.

Proposition 19. The map Q � Q �→ Q̂(Q) ∈ Q defined in
(28) has the following properties:

(a): Q̂(Q) is Lipschitz continuous on Q, i.e., there exists a
positive constant LQ̂ such that for any Q1,Q2 ∈ Q, we have∥∥Q̂(Q1)− Q̂(Q2)

∥∥ ≤ LQ̂

∥∥Q1 −Q2
∥∥;

(b): For any Q ∈ Q, Q̂(Q) −Q is an ascent direction of
U(Q) at Q such that〈

Q̂(Q)−Q,∇Q∗U(Q)
〉 ≥ cτ

∥∥Q̂(Q)−Q
∥∥2,

where cτ > 0 is defined in (27);
(c): The set of fixed points of the map Q̂(Q) coincides with

the set of stationary points of (8); therefore the map Q̂(Q)
has a fixed point;

(d): Q̂(Q)−Q is bounded onQ: there exists a finite positive
constant B such that

∥∥Q̂(Q)−Q
∥∥ ≤ B, for any Q ∈ Q.

Proof: We only prove (a) and (b) due to page limit.
(a): In view of the compactness of the joint feasible set Q
defined in (6), the function U(Q) has a bounded Hessian and
∇Q∗U(Q) is thus Lipschitz continuous on Q. It is also easy
to verify that ∇Q∗Ũ(Q; •) is uniformly Lipschitz continuous
on Q; we denote by L̃∇ its Lipschitz constant.

By definition, Q̂(Q1) satisfies the minimum principle of
(28) [21, Lemma 24]:〈

Q− Q̂(Q1),∇Q∗Ũ(Q̂(Q1);Q1)
〉 ≤ 0, ∀Q ∈ Q; (49a)

likewise, so does Q̂(Q2):〈
Q− Q̂(Q2),∇Q∗ Ũ(Q̂(Q2);Q2)

〉 ≤ 0, ∀Q ∈ Q. (49b)

Setting Q = Q̂(Q2) in (49a) and Q = Q̂(Q1) in (49b),
and summing the resulting inequalities we obtain: denoting
for short Q̂(Q1) by Q̂1 and Q̂(Q2) by Q̂2,

0 ≥ 〈
Q̂1 − Q̂2,∇Q∗Ũ(Q̂2;Q2)−∇Q∗Ũ(Q̂1;Q1)

〉
=

〈
Q̂1 − Q̂2,∇Q∗Ũ(Q̂2;Q2)−∇Q∗Ũ(Q̂2;Q1)

〉
+

〈
Q̂1 − Q̂2,∇Q∗Ũ(Q̂2;Q1)−∇Q∗Ũ(Q̂1;Q1)

〉
. (50)

We first apply the Cauchy-Schwarz inequality on the first
term in (50):〈

Q̂1 − Q̂2,∇Q∗ Ũ(Q̂2;Q2)−∇Q∗ Ũ(Q̂2;Q1)
〉

≥ − ∥∥Q̂1 − Q̂2
∥∥∥∥∇Q∗Ũ(Q̂2;Q2)−∇Q∗Ũ(Q̂2;Q1)

∥∥
≥ − L̃∇

∥∥Q̂1 − Q̂2
∥∥∥∥Q1 −Q2

∥∥, (51)

where the last inequality comes from the Lipschitz property of
∇Q∗ Ũ (Q; •) (with constant L̃∇). Furthermore, we infer from
strong concavity of Ũ (•;Q) (cf. (27)) the following inequality
for the second term in (50):〈

Q̂1 − Q̂2,∇Q∗Ũ(Q̂1;Q1)−∇Q∗Ũ(Q̂2;Q1)
〉

≤ − cτ
∥∥Q̂1 − Q̂2

∥∥2 (52)

Combining (51) and (52), we get the desired Lipschitz prop-
erty of Q̂(Q): for any Q1 and Q2 ∈ Q,∥∥Q̂1 − Q̂2

∥∥ ≤ c−1
τ L̃∇

∥∥Q1 −Q2
∥∥.

(b): Since Q̂(Qν) is the (unique) optimal solution of the
convex problem (28), it follows from the minimum principle
[21, Lemma 24] that (recall Q̂ν stands for Q̂(Qν))〈

Qν − Q̂ν ,∇Q∗Ũ(Q̂ν ;Qν)
〉 ≤ 0,

which further indicates that

0 ≥ 〈
Qν − Q̂ν ,∇Q∗Ũ(Q̂ν ;Qν)

〉
=
〈
Qν − Q̂ν ,∇Q∗Ũ(Qν ;Qν)

〉
+

〈
Qν − Q̂ν ,∇Q∗Ũ(Q̂ν ;Qν)−∇Q∗ Ũ(Qν ;Qν))

〉
≥ 〈

Qν − Q̂ν ,∇Q∗U(Qν)
〉
+ cτ

∥∥Q̂ν −Qν
∥∥2.

Rearranging the terms, we get the inequality in (b).

Proof of Theorem 9 and Theorem 11: The proof is based
on Proposition 19 and follows the same line of [24, Th. 2 and
4]; we omit the details because of space limit.
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