Convex Optimization (SS 2016)

Inhalt:

Diese Vorlesung stellt die grundlegende Theory der Konvexen Optimierung vor und erläutert anhand von zahlreichen Beispielen ihre Anwendung in der digitalen Signalverareitung und in mobile Kommunikationssystemen.

Übersicht: Einführung, konvexe Mengen und Funktionen, konvexe Optimierungsprobleme und Klassen wichtiger konvexer Probleme (LP, QP, SOCP, SDP, GP), Lagrange Dualität and KKT Bedingungen, Grundlagen der Numerischen Optimierung und der Innere-Punkt-Verfahren, Optimierungstools, innere und äußere Approximationsverfahren für nichtkonvexe Probleme, Sparse Optimization, verteilte Optimierung, gemischt ganzzahlige lineare und nichtlineare Optimierung, Anwendungen.